

FORECASTING WARRANTY CLAIMS FOR MONTH IN SERVICES

GROUPS IN AUTOMOTIVE SECTOR

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

BEGÜM TEKÖZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

STATISTICS

AUGUST 2022

Approval of the thesis:

FORECASTING WARRANTY CLAIMS FOR MONTH IN SERVICES

GROUPS IN AUTOMOTIVE SECTOR

submitted by BEGÜM TEKÖZ in partial fulfillment of the requirements for the

degree of Master of Science in Statistics, Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Özlem İlk Dağ

Head of the Department, Statistics

Prof. Dr. Ceylan Yozgatlıgil

Supervisor, Statistics, METU

Prof. Dr. Tuğba Taşkaya Temizel

Co-Supervisor, Data Informatics, METU

Examining Committee Members:

Assist. Prof. Fulya Gökalp Yavuz

Department of Statistics, METU

Prof. Dr. Ceylan Yozgatlıgil

Department of Statistics, METU

Assist. Prof. Kamil Demirberk Ünlü

Department of Industrial Engineering, Atılım University

Date: 02.09.2022

iv

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

Name Last name : Begüm Teköz

Signature :

v

ABSTRACT

FORECASTING WARRANTY CLAIMS FOR MONTH IN SERVICES

GROUPS IN AUTOMOTIVE SECTOR

Teköz, Begüm

Master of Science, Statistics

Supervisor: Prof. Dr. Ceylan Yozgatlıgil

Co-Supervisor: Prof. Dr. Tuğba Taşkaya Temizel

August 2022, 97 pages

Forecasting claim rate under warranty allows companies to optimize their production

processes, reduce warranty costs and maintain customer satisfaction. In the case of a

production crisis, the poor performance of the claim rate forecast negatively affects

business processes. This thesis aims to improve the business processes of many

departments, including production, research and development, quality, and after-

sales, by forecasting the number of monthly claims in each service group. In this

study, warranty data obtained from an automotive industry is used to forecast three

months data for twenty-five different in-service warranty performance groups using

statistical and machine learning algorithms. Specifically, statistical approaches

including ARIMA, TBATS and ETS models and machine learning methods

including random forest, support vector regression, XGBoosting, feed forward

neural network, long short-term memory neural network, and Bayesian regularized

neural network are employed. The performance of the models is compared with the

Wilcoxon signed-rank test, and the results show that the best performing models are

machine learning methods and the random forest model.

vi

Keywords: Time series analysis, Machine Learning, Warranty Performance

vii

ÖZ

OTOMOTİV SEKTÖRÜNDE HİZMET GRUPLARINDA AYLIK

GARANTİ TALEPLERİNİN TAHMİNİ

Teköz, Begüm

Yüksek Lisans, İstatistik

Tez Yöneticisi: Prof. Dr. Ceylan Yozgatlıgil

Co-Supervisor: Prof. Dr. Tuğba Taşkaya Temizel

Ağustos 2022, 97 sayfa

Garanti kapsamında talep oranını tahmin etmek, şirketlerin üretim süreçlerini

optimize etmelerine, garanti maliyetlerini düşürmelerine ve müşteri memnuniyetini

sürdürmelerine olanak tanır. Bir üretim krizi durumunda, hasar oranı tahmininin

zayıf performansı iş süreçlerini olumsuz etkiler. Bu tez, her bir hizmet grubundaki

aylık hasar sayısını tahmin ederek, üretim, araştırma ve geliştirme, kalite ve satış

sonrası dahil olmak üzere birçok departmanın iş süreçlerini iyileştirmeyi

amaçlamaktadır. Bu çalışmada, bir otomotiv endüstrisinden elde edilen garanti

verileri, istatistiksel ve makine öğrenmesi algoritmaları kullanılarak yirmi beş farklı

hizmet içi garanti performans grubu için üç aylık verileri tahmin etmek için

kullanılmıştır. Özellikle, otoregresif bütünleşik hareketli ortalama, TBATS ve üstel

düzleştirme modellerini içeren istatistiksel yaklaşımlar ve rastgele orman, destek

vektör makinesi, ekstrem gradyan arttırma, ileri beslemeli sinir ağları, uzun kısa

süreli bellek ve Bayesçi yapay sinir ağını içeren makine öğrenme yöntemleri

kullanılmaktadır. Modellerin performansı Wilcoxon işaretli sıra testi ile

karşılaştırılmış ve sonuçlar en iyi performans gösteren modellerin makine öğrenmesi

yöntemleri ve rastgele orman modeli olduğunu göstermektedir.

viii

Anahtar Kelimeler: Zaman Serisi Analizi, Tahmin, Makine Öğrenmesi, Garanti

Performansı

ix

To my family

x

ACKNOWLEDGMENTS

I would like to express my gratitude and appreciation to my thesis advisor Prof. Dr.

Ceylan Yozgatlıgil and co-advisor Prof. Dr. Tuğba Taşkaya Temizel for their never-

ending guidance, encouragement, and patience. I feel privileged to work with them

and learn from their experiences and knowledge. Without their inspiring guidance

and encouraging energy, this thesis could not have been completed.

I would like to thank the examining committee members; Assist. Prof. Fulya Yavuz

Gökalp, Prof. Dr. Ceylan Yozgatlıgil, Assist. Prof. Kamil Demirberk Ünlü for their

suggestions and comments.

I would like to thank Ozancan Özdemir and Mutakabbir Ahmed Tayib, who helped

me whenever I needed during my thesis process and did not spare their valuable

support and experience. Moreover, I would like to thank my co-workers and

managers who provided all kinds of support and contributed to my development

during my thesis process.

I’m thankful to my lovely friends Polen Alemdar, Emre Altın, Pınar Cemre Yazıcı,

İlayda Korkmaz, Buse Bakış, Rümeysa Rana Arslan for their endless support and

encouragement during this thesis study.

Finally, I would like to thank my family, Elif Teköz, Mustafa Teköz, Gülay Teköz

Ece, Nuray Teköz Dengiz, Hakan Dengiz, Sedat Ece, Zeynep Dengiz, Elif Dengiz

and Ali Ece for their endless love and support throughout my life. I am grateful for

their patience and endless love in the thesis process.

xi

TABLE OF CONTENTS

ABSTRACT ... v

ÖZ ... vii

ACKNOWLEDGMENTS ... ix

TABLE OF CONTENTS ... xi

LIST OF TABLES ... xiv

LIST OF FIGURES .. xvii

LIST OF ABBREVIATIONS .. xix

1. INTRODUCTION ... 1

2. LITERATURE REVIEW .. 7

2.1 Stochastic Process .. 7

2.1.1 Non-Homogeneous Poisson Process ... 7

2.1.2 Flexible Non- Homogeneous Poisson Process 8

2.1.3 Weighted Poisson Process .. 9

2.2 Machine Learning Algorithm ... 10

2.2.1 Multi-Layer Perceptron Neural Networks .. 10

2.2.2 Support Vector Machine ... 11

3. METHODOLOGY .. 13

3.1 Autoregressive Integrated Moving Average Model (ARIMA) 13

3.2 Exponential Smoothing Methods (ETS) .. 15

3.2.1 Simple Exponential Smoothing .. 15

3.2.2 Holt’s Exponential Smoothing .. 16

3.2.3 Holt-Winters Exponential Smoothing ... 16

3.3 Trigonometric Seasonal Models (TBATS) .. 19

xii

3.4 Support Vector Machine ... 21

3.5 Random Forest .. 23

3.6 Extreme Gradient Boosting (XGBoost) .. 24

3.7 Artificial Neural Network ... 27

3.7.1 Feed-Forward Neural Network .. 30

3.7.2 Long Short-Term Memory .. 31

3.7.3 Bayesian Regularized Neural Network ... 34

3.8 Forecast Accuracy Measures .. 36

3.8.1 Root Mean Square Error .. 36

3.8.2 Mean Absolute Percentage Error ... 37

3.8.3 Computational Time .. 37

4. ANALYSIS ... 39

4.1 Dataset .. 39

4.2 Data Preprocessing ... 40

4.3 Model Implementation .. 42

4.3.1 Statistical Models .. 43

4.3.2 Machine Learning Models ... 44

4.4 Empirical Analysis .. 50

4.4.1 Comparison of Modelling Performances ... 50

4.4.2 Computational Times .. 59

5. CONCLUSION AND FUTURE STUDIES .. 61

REFERENCES .. 65

A. The ACF-PACF Plot of MIS 6 ... 75

B. The Tuned Hyperparameters of Machine Learning Methods 76

xiii

C. LSTM Models Implemented with Weight Initialization Techniques for

MIS 0 89

xiv

LIST OF TABLES

TABLES

Table 4.1. The MAPE of All Methods of Test Dataset for each MIS Group 52

Table 4.2. The RMSE of All Methods of Test Dataset for each MIS Group 53

Table 4.3. The MAPE of All Methods of Train Dataset for each MIS Group 54

Table 4.4. MAPE and RMSE values of the LSTM Models Established with

Different Weight Initializers .. 56

Table 4.5. The P-Value of Wilcoxon Signed-Rank Test ... 58

Table 4.6. The Computation Time for Model Training ... 60

Table B.1. The Tuned Hyperparameters of Machine Learning Methods for MIS 0

 ... 76

Table B.2. The Tuned Hyperparameters of Machine Learning Methods for MIS 1

 ... 76

Table B.3. The Tuned Hyperparameters of Machine Learning Methods for MIS 2

 ... 77

Table B.4. The Tuned Hyperparameters of Machine Learning Methods for MIS 3

 ... 77

Table B.5. The Tuned Hyperparameters of Machine Learning Methods for MIS 4

 ... 78

Table B.6. The Tuned Hyperparameters of Machine Learning Methods for MIS 5

 ... 78

Table B.7. The Tuned Hyperparameters of Machine Learning Methods for MIS 6

 ... 79

Table B.8. The Tuned Hyperparameters of Machine Learning Methods for MIS 7

 ... 79

Table B.9. The Tuned Hyperparameters of Machine Learning Methods for MIS 8

 ... 80

Table B.10. The Tuned Hyperparameters of Machine Learning Methods for MIS 9

 ... 80

xv

Table B.11.. The Tuned Hyperparameters of Machine Learning Methods for MIS

10 ... 81

Table B.12. The Tuned Hyperparameters of Machine Learning Methods for MIS

11 ... 81

Table B.13. The Tuned Hyperparameters of Machine Learning Methods for MIS

12 ... 82

Table B.14. The Tuned Hyperparameters of Machine Learning Methods for MIS

13 ... 82

Table B.15. The Tuned Hyperparameters of Machine Learning Methods for MIS

14 ... 83

Table B.16. The Tuned Hyperparameters of Machine Learning Methods for MIS

15 ... 83

Table B.17. The Tuned Hyperparameters of Machine Learning Methods for MIS

16 ... 84

Table B.18. The Tuned Hyperparameters of Machine Learning Methods for MIS

17 ... 84

Table B.19. The Tuned Hyperparameters of Machine Learning Methods for MIS

18 ... 85

Table B.20. The Tuned Hyperparameters of Machine Learning Methods for MIS

19 ... 85

Table B.21. The Tuned Hyperparameters of Machine Learning Methods for MIS

20 ... 86

Table B.22. The Tuned Hyperparameters of Machine Learning Methods for MIS

21 ... 86

Table B.23. The Tuned Hyperparameters of Machine Learning Methods for MIS

22 ... 87

Table B.24. The Tuned Hyperparameters of Machine Learning Methods for MIS

23 ... 87

Table B.25. The Tuned Hyperparameters of Machine Learning Methods for MIS

24 ... 88

xvi

Table C.1. Tuned Parameters of Models Applied Five Different Weight Initializer

Methods ... 97

xvii

LIST OF FIGURES

FIGURES

Figure 3.1. The Structure of Neural Network (Kim et al., 2018) 28

Figure 3.2. The General Concept of Artificial Neural Network (Chughtai et al.,

2008) ... 28

Figure 3.3. The Structure of Feed Forward Neural Network (Ozel et al.,2009)..... 31

Figure 3.4. The Structure of the Long Short-Term Memory (LSTM) Neural

Network (Yan, 2017) .. 33

Figure 4.1. The Diagram of Splitting Dataset ... 42

Figure 4.2. The Time Series Plots of MIS 0, MIS 10, MIS 16 and MIS 24 51

Figure 4.3. The Average of MAPE Values of All Models 58

Figure A.1. The ACF- PACF Plot of MIS 6 ... 75

Figure C.1. The Plot of Actual and Predicted Claims with Variance Scaling Weight

Initialization .. 89

Figure C.2. The Plot of MAPE Values of Train and Validation Sets with Variance

Scaling Weight Initialization .. 90

Figure C.3. The Plot of Actual and Predicted Claims with Variance Scaling Weight

Initialization on Validation Dataset .. 90

Figure C.4. The Plot of Actual and Predicted Claims with Random Normal Weight

Initialization .. 91

Figure C.5. The Plot of MAPE Values of Train and Validation Sets with Random

Normal Weight Initialization .. 91

Figure C.6. The Plot of Actual and Predicted Claims with Random Normal Weight

Initialization on Validation Dataset .. 92

Figure C.7. The Plot of Actual and Predicted Claims with Random Uniform

Weight Initialization ... 92

Figure C.8. The Plot of MAPE Values of Train and Validation Sets with Random

Uniform Weight Initialization ... 93

Figure C.9. The Plot of Actual and Predicted Claims with Random Uniform

Weight Initialization on Validation Dataset.. 93

xviii

Figure C.10. The Plot of Actual and Predicted Claims with Zero Weight

Initialization ... 94

Figure C.11. The Plot of MAPE Values of Train and Validation Sets with Zero

Weight Initialization .. 94

Figure C.12. The Plot of Actual and Predicted Claims with Zero Weight

Initialization on Validation Dataset ... 95

Figure C.13. The Plot of Actual and Predicted Claims with Glorot Normal Weight

Initialization ... 95

Figure C.14. The Plot of MAPE Values of Train and Validation Sets with Glorot

Normal Weight Initialization ... 96

Figure C.15. The Plot of Actual and Predicted Claims with Glorot Normal Weight

Initialization on Validation Dataset ... 96

xix

LIST OF ABBREVIATIONS

ABBREVIATIONS

AIC Akaike Information Criterion

AICC Corrected Akaike Information Criterion

ANN Artificial Neural Network

AR Autoregressive-Average Ranking

ARCH Autoregressive Conditional Heteroscedastic

ARMA Autoregressive Moving Average

ARIMA Autoregressive Integrated Moving Average

BIC Bayesian Information Criteria

BRNN Bayesian Regularized Neural Network

BP Back Propagation

ETS Exponential Smoothing Method

GRBF Gaussian Radial Basis Functions

LSTM Long Short-Term Memory

MA Moving Average

MAPE Mean Absolute Percentage Error

MIS Months in Service

ML Machine Learning

MLP Multi-Layer Perception

MNHPP Mixed Non-homogeneous Poisson Process

xx

MSE Mean Square Error

NHPP Non-homogeneous Poisson Process

NN Neural Network

NNETAR Feed-Forward Neural Network

NRMSE Normalized Root Mean Square Error

RBFN Radial Basis Function Network

RMSE Root Mean Square Errors

RF Random Forests

RNN Recurrent Neural Network

SV Support Vector

SVM Support Vector Machine

SVR Support Vector Regression

TBATS Trigonometric Seasonal, Box-Cox Transformation, ARMA residuals,

Trend, Seasonality

tSVR Twin Support Vector Regression

XGBoost Extreme Gradient Boosting

WNHPP Weighted Non-homogeneous Poisson Process

WMNHPP Weighted Mixed Non-homogeneous Poisson Process

wSVR Weighted SVR-based time series model

1

CHAPTER 1

1. INTRODUCTION

Warranty is a contract indicating that the manufacturer is responsible for resolving

this situation in case the products produced fail within the scope of the warranty. The

contract includes both the expected performance and the compensation available to

the buyer should a failure occur (Murthy et al., 2004). Automobile companies that

spend a large amount of money annually to repair products that fail in line with the

scope of the contract give priority to the analysis of warranty data (Rai et al.,2005).

A typical life cycle of defective products is as follows: Manufactured products are

stored in warehouses and products are delivered to customers through distributors.

Some of these product’s malfunction during the warranty period and are brought to

the service. Warranty data is data collected during the repair of defective products

under warranty, and there is additional data that includes production, sales, and

supply information of the defective product (Wu, 2012).

Warranty data may contain different information depending on the industry, and each

sector may have its own set of goals. According to the number of factors, warranty

procedures coverage is categorized as one-dimensional or two-dimensional. One-

dimensional warranty policies only consider a single variable, such as age (Marshall

et al., 2009), manufacturing characteristics of items (Kalbfleisch et al., 1988), and

usage (Lawless et al., 1992, Hu et al., 1997 and Hu et al., 1998). Two-dimensional

warranty policies typically take two factors such as age and usage amount or age and

mileage limits. Warranty policies for high-capital products like automobiles and

aircraft engines are typically two-dimensional, evaluating use and age together

(Wang et al., 2018). In warranty models used in some automotive industries, the

2

coverage area is one-dimensional and only time is preferred (Yang et al., 2004). The

aim of both one-dimensional and two-dimensional approaches is to forecast the

claim rates by using past observations.

The warranty claim prediction is used in both warranty procedures to provide

manufacturers with knowledge about the product's performance and quality. Since

time series have a wide application area, approaches have been developed in line

with the needs. Many methods, including lifetime distributions, stochastic processes,

time series analysis, and machine learning algorithms such as artificial neural

networks and support vector machines, have been used to predict warranty claims in

this way.

Although the follow-up of the warranty process varies according to the working

principles of the companies, the focus is on the month of the warranty of a defective

product. The month in services (MIS) is defined as the time the vehicle was used by

the last customer. This information shows the month of service during the warranty

period. Products that fail in the first month of the warranty are included in the MIS

0 service group, while the products that fail in the second month of the warranty are

included in the MIS 1 service group. The warranty period in the automotive industry

is generally 2 years. Accordingly, products that failed in the last month of the

warranty are also in the MIS 24 service group.

The focused metrics differ, as the warranty data contains different information

depending on the industry and the priorities of each sector are different. Some

companies prefer to use the cumulative number of repairs in the field per 1000

products per month of service, while some companies prefer to consider the ratio of

the number of requests in the month of service divided by the total number of

productions during the period in which the defective product was produced. In

addition, the ratio formed by dividing the number of requests in the service month

by the number of products sold for the same MIS group also be applied by some

companies.

3

When predicting the warranty data, various ratios and methods have been

investigated in the literature, which will be discussed in the next section. Moreover,

point estimates for the cumulative mean function of warranty claims were

constructed by Lawless et al. (1995) based on Poisson models. Akbarov and Wu

(2012) used the autoregressive mean model and Poisson methods to estimate the

distribution of the claim rate, which is formed by dividing the number of claims

received in the same service group by the number of products produced in the same

service group. With new requirements and techniques developed over time, the

prediction of total claims in warranty data has also improved. Nonparametric

techniques such as neural networks were used to predict warranty claims using

multilayer perceptions (MLP) and radial basis functions (Rai et al., 2005) have been

applied to predict the cumulative number of repairs carried out per 1000 vehicles.

Moreover, forecasting the claim rate was constructed by using a support vector

machine (Wu et al., 2011). Details of the applied methods are shared in detail in the

second part.

The global automotive industry is currently dealing with a chip shortage, which has

an impact on production volume. As Wu et al. (2021) stated, the continuation of the

chip shortage can increase the risk of breaking the industrial chain. Warranty data of

a company in the automotive industry, whose name cannot be disclosed due to

confidentiality, was used in this study. Due to the chip shortage, the company's

production plan is constantly changing upon notification from suppliers. The

company had to prefer to use different alternatives, as the use of a claim rate, which

includes the number of sales or the number of productions, became difficult in

business processes. Forecasting the number of claims appears to be an alternative

based on the requirements of the organization and the applicability of the predicted

results processes. Besides that, the business operations of the departments in the

factory benefit from forecasting the total number of claims for each MIS group. For

the service component, forecasting MIS groups separately aids in a more thorough

analysis of failures' root causes. It is also used to oversee whether the malfunction

requests accurately reflect the actions taken during the product quality development

4

phase. In addition, the amount of budget allocated by the finance department varies

according to the MIS groups to be foreseen, considering the total number of claims.

Most studies in the literature concentrate on forecasting the claim rate, but this study

contributes to the literature by directly addressing the number of claims. With this

contribution to the literature, it proposes methods that other companies can apply. In

line with the needs of the company, the total number of claims for a total of 25 MIS

groups in the service group is forecast to be 3 months consecutive. The aim of this

thesis is to test whether the frequently used ML models and time series models can

be used effectively in the forecasting of the number of claims. To the best of our

knowledge, these methods have been applied for the first time for the company

providing the warranty data, and they aim to contribute to the management of

business processes within the company. In this study, three statistical models

ARIMA, Exponential Smoothing, TBATS, and six different machine learning

methods Support Vector Regression, Random Forest, XgBoost, Feed Forward

Neural Network, Bayesian Regularized Neural Network, and Long Short-Term

Memory Neural Network were used. By applying non-parametric statistical tests, the

performances of the models were compared and the approach to be applied to the

company was determined.

The pre-processing of the data set was chosen considering the needs of the models

and is explained in detail in Chapter 4. The prediction performance error of the

models is compared by considering the mean absolute percentage error (MAPE) and

root means square error (RMSE) values. Except for the Long Short-Term Memory

Neural Network, all other models are installed on R Studio with version 1.3.959, and

Python with version 3.6. is used in the Long Short-Term Memory Neural Network

model to be able to control the hyper-parameters more efficiently.

The study is divided into five main sections. In the first section, the importance of

warranty data analysis and forecasting the number of claims is described. The second

part covers the research in the literature about predicting the number of claims. The

5

theoretical justification of the models used in the study and the accuracy

measurement metrics utilized in the model performance comparison is presented in

the third section. The data set, pre-processing techniques, applied models'

parameters, and tuning techniques are all covered in Chapter 4. Additionally, the

study concludes and suggestions for additional research.

7

CHAPTER 2

2. LITERATURE REVIEW

Warranty data is industry specific and comprise information regarding product

quality and reliability. Forecasting the number of claims under warranty directly

affects the company's production, supply, after-sales, and finance departments. The

methods developed for estimating warranty claims and their performances were

listed and explained below.

2.1 Stochastic Process

The Poisson process is one of the most used methods for predicting warranty claims,

and it has been emphasized by researchers that it can be applied to a wide variety of

environments (Veevers et al., 1986 and Lawless, 1987). Stochastic approaches have

been preferred by most researchers, since the claim numbers are recurrent events in

the warranty data. The number of claims is predicted using the heterogeneity and

random effects between incoming fault requests.

2.1.1 Non-Homogeneous Poisson Process

The Non-Homogeneous Poisson model in the stochastic process, which estimates

the number of failures up to time t, was used by Majeske (2007) to predict automobile

failures and their occurrence time using the warranty dataset (Majeske, 2007). It is

similar to an ordinary Poisson process, except for the fact that the average rate of

arrival can change with time. The assumption behind NHPP is that the mean and

variance of the total warranty claims over any given period are equal.

8

Automobile manufacturers tend to attempt to predict the number of claims in the

warranty dataset without taking mileage into account. When predicting the number

of claims, Majeske (2007) contended that using a two-dimensional perspective

would lead to better outcomes if the total number of claims and mileage were

assessed. When using the NHPP approach, homogeneity was assumed, implied that

all the vehicles in the population have the same density function or failure rate

(Majeske, 2007). It was also allowed for the inclusion of past experiences when

describing the failure process. His study revealed that warranty claims could be

forecasted more precisely with the NHPP.

2.1.2 Flexible Non- Homogeneous Poisson Process

Flexible nonhomogeneous Poisson processes were proposed by Fredette et al. (2007)

to forecast the warranty claims with random effects being used to model any

potential product heterogeneity. This study incorporated the finite horizon total

prediction, which allows the prediction of the population's total number of events

over a given period without sacrificing generality (Fredette et al., 2007). The study

of Fredette et al. (2007) aimed to handle sizable heterogeneous populations of units,

to use the age of product or time in the event process, and to provide accurate forecast

intervals. In this study, the car warranty dataset from those presented by Kalbfleisch

et al. (1991) was used. It includes 15,775 cars produced in a total of 206 days, and

the total number of requests is 2620. Moreover, they estimated based on the data

accumulated in the first 150 days of production. The scenarios where heterogeneity

was observed between processes for different units were considered. The

independent and identically distributed random variables that could not be observed

were added to the model as gamma distribution every 50 days.

In the study conducted by Fredette et al. (2007), it was determined that even if the

alpha values in the gamma distribution were not actually random, the beta

components could be determined accordingly, and the reliability of the model could

be ensured. In their proposed methodology, unit-level random effects were used as a

9

gamma distribution, thus unit-to-unit heterogeneity was captured, and realistic

estimation intervals were provided (Fredette et al., 2007).

2.1.3 Weighted Poisson Process

Wu and Akbarov, in their 2011 study, showed that the warranty claims in recent

months is more important in predicting future demands by using machine learning

methods. In accordance with this study, Akbarov et al. (2012) predicted warranty

claims and compared models with a total of six different methods including a

weighted approach in Poisson processes. The implemented methods are

Autoregressive Integrated Moving Average (ARIMA), Inhomogeneous Poisson

Process (NHPP), Mixed NHPP (MNHPP) and Artificial Neural Network model,

Weighted NHPP and Weighted MNHPP. The MHNPP model includes a useful

technique for overcoming overdispersions in which the increments are not

independent. ANN, on the other hand, was chosen for this study because it works

well in time series models. Also, weighted maximum likelihood estimation was used

for NHPP and MNHPP.

By examining the 18-month warranty data of eight different electronics industry

products, forecasts were conducted with six different methods according to two

different time horizons, 3 and 6 months. The dataset includes the number of items in

the market at time t and the number of claims at month t. The claim rate was forecast

by dividing the number of claims at the observed time t by the number of products

in the market. The performance of the models was compared using the normalized

mean squared error to measure the prediction error.

The average NRMSE value was evaluated for each utilized framework and the two

time periods. According to the model performance results, it was found that the

MNHPP model approach had the lowest NRMSE value. Moreover, the performance

of the MNHPP model was superior to the NHPP model when weighted maximum

likelihood was used. When all models were compared, it was found out that the

10

MNHPP approach performs better than other approaches overall. It was stated that

the reason for this might be the selection of the weight function and parameters with

selecting static validation data set. Through this study, Akbarov et al. (2012)

demonstrated how adding the weighted maximum likelihood into the warranty data

can bring the forecast result even closer to the actual value.

2.2 Machine Learning Algorithm

2.2.1 Multi-Layer Perceptron Neural Networks

Rai et al. (2005) designed a new multi-layered perception neural network to analyze

the claim ratio in the warranty data of the automotive industry. In addition to

forecasting future MIS values, this study also involved predicting the performance

of a given month's services warranty (MIS) in a specific future. The claim rate that

they predicted was the total number of claims out of every 1000 units (R/1000), and

the average claim rate for the services group increases each month by gradually

adding the subsequent months (Rai et al., 2005).

Although dynamic linear models and log-log plots have been used in the literature

to predict warranty data, they argued that new methodologies are required for

maturing data. Rai et al. (2005) proposed the multiple perception approach, arguing

that instead of using dynamic linear models with a radial basis, a dynamic linear

model with innovation terms would be better to consider the uncertainties introduced

by maturing data. There were two different types of signals flowing in the MLP

networks implemented in this study: function and error signals. The function signal

ran from the network's entrance to its outcome, while the error signal acted in the

opposite way. The signal factor, which affects the forecasting window and the initial

synaptic weight values, was the first factor in the study to have an impact on the

MLP networks forecasting. The second factor was the control factor, which includes

the number of neurons in each layer, the learning rate, the momentum, and the

11

training mode. The third factor was the noise factor, which includes the design,

manufacturing, assembly, service-related change, and biased warranty data.

The performances of the MLP networks were compared with the performances of

the RBF networks and log-log regression models using the normalized root mean

square error (NRMSE) metric. Because the network's initial value assignments were

random, two different NRMSE values were calculated using the same parameters.

Both the test and train datasets were chosen to contain the number of neurons and

learning rate that will have the highest signal-to-noise ratio and the lowest NRMSE

value (Rai et al, 2005). As a result of this model, claim rates were predicted correctly,

but when the forecast horizon exceeded eight months, it was observed that the

prediction error values increased.

2.2.2 Support Vector Machine

Wu et al. (2011) claimed that models that have been implemented in the literature

which are log-linear Poisson models, Kalman filter, time series models, and artificial

neural network, had two weaknesses. Firstly, it was stated that predicting the rates

calculated by arithmetic mean processing would cause a loss of information, and

secondly, the number of claims in recent months is more important in predicting

future requests. To overcome all these problems, the original warranty data was taken

into account, such as claim rates, and repair rates in this study, and a more flexible

model structure was preferred with higher weight given to the final warranty claims

(Wu et al., 2011). In order to prove the veracity of these claims, the performances of

numerous models were compared using two different industries’ warranty datasets

from automobile and electronics manufacturers. They applied five different models,

radial basis function network (RBFN), MLP, SVR, tSVR, and wSVR Java

programming language, and some functions from two data mining packages, Weka

and LIBSVM, were borrowed.

12

When using the RBFN, three hyper-parameters, which were the number of Gaussian

radial basis functions, the minimum standard deviation for GRBFs, and the ridge

value for using the outputs of GRBFs, were considered in this study. Moreover, a

single hidden layer using backpropagation was constructed to find the optimal

parameters of the multilayer perception, and hyper-parameters which were learning

rate, momentum, and the number of hidden nodes in the hidden layer were used. The

SVR was created by optimizing the constant C, epsilon, and gamma hyper-

parameters. Eventually, gamma and epsilon were utilized as hyper-parameters in

weighted SVR based time series (tSVR) and weighted support vector regression

(wSVR) models. Unlike SVR, adaptive C was used instead of the constant term C in

the wSVR and tSVR. Within the two datasets, the data were divided into the training,

validation, and test datasets, and the hyper-parameters with the lowest MSE were

determined from the validation dataset. The mean square error and the weighted total

square error were applied to compare the performances of the constructed models.

As a result of this study, Wu et al. (2011) showed that the weighted SVR-based time

series model outperforms MLP, RBFN, and SVR in predicting the number of claims

on warranty data from two different industries. Likewise, the weighted SVR

regression model also generated superior outcomes to other methodologies.

According to Wu et al. (2011), the main reason weighted methods had higher

prediction accuracy was the fact that more weight was given to the most recent data

rather than previous data.

13

CHAPTER 3

3. METHODOLOGY

In this section, forecasting methods will be introduced. Nine different methods were

applied to determine which forecasting technique performs the best for the dataset.

The first three of these models are well known traditional statistical methods, namely

ARIMA, ETS and TBATS. Altough ARIMA and ETS were applied in the literature,

TBATS was not preferred by researchers. The machine learning methods, that are

chosen for forecasting, are the Support Vector Regression, Random Forest,

XGBoost, Feed Forward Neural Network, Bayesian Regularized Neural Network

and Long Short Term Memory Neural Network.

3.1 Autoregressive Integrated Moving Average Model (ARIMA)

Autoregressive (AR) model was introduced by Yule (1926) and Moving Average

(MA) was introduced by Slutsky (1937). Box et al. (1970) investigated the

autoregressive moving average model (ARMA) based on works of Yule (1926),

Slutsky (1937) and Wold (1938). This model is the linear combination of 𝑝 past time

series variables and 𝑞 past white noise error terms, which can be used for a large

class of stationary time series and predict future values for the stationary condition

(Slutsky, 1937). The general expression of ARMA models is written as ARMA (p,

q). The mathematical expression is given in Equation 3.1.

𝑦�̇� − 𝜙1�̇�𝑡−1 − ⋯ − 𝜙𝑝�̇�𝑡−𝑝 = 𝜖𝑡 + 𝜃1𝜖𝑡−1 + ⋯ + +𝜃𝑞𝜖𝑡−𝑞

(3.1)

14

The coefficients of 𝜙 and 𝜃 which are the autoregressive and moving average

parameters, respectively satisfy stationarity and invertibility conditions. The most

important assumption in time series analysis is that stationarity is required to make

statistical inference. In a stationary process, the mean, variance, and autocorrelation

structure do not change over time. The uncorrelated random variable of 𝜖𝑡 is white

noise, which is assumed independent and identically distributed (i.i.d) random

variables, and it is distributed normally with zero mean and constant variance. The

orders of autoregressive models and moving average models are p and q,

respectively.

The backward shift operator is called B defined by 𝐵𝑦𝑡 = 𝑦𝑡−1. The autoregressive

part (1 − 𝜙1𝐵 − 𝜙2𝐵2 − ⋯ − 𝜙𝑝𝐵𝑃) and moving average part (1 + 𝜃1𝐵 + 𝜃2𝐵2 +

⋯ + 𝜃𝑞𝐵𝑞) are represented by 𝜙(𝐵) and 𝜃(𝐵) polynomials.

 To be able to apply AR, MA and ARMA models mentioned above, the time series

must maintain the assumption of stationarity. The Autoregressive Integrated Moving

Average (ARIMA) model has been implemented for time series where the stationary

assumption cannot be provided which is proposed by Box et al. (1970). The ARIMA

model has three parts which are Auto Regressive (AR), Integrated (I), Moving

Average (MA). The autoregressive part covers the lags of the differenced series, and

it is a linear regression that relates past values of the series to the future values. The

integrated part (I) is the number of differences to make time series stationary.

Moving average terms cover the lag of errors and relate past forecast errors to future

values of time series.

 The general expression of ARIMA (p, d, q) is given as Equation 3.2.

𝜙(𝐵)(1 − 𝐵)𝑑𝑦�̇� = 𝜃(𝐵)𝜖𝑡.

(3.2)

The 𝑑𝑡ℎdifference operator shows how many differences are required to make the

series stationary. The ordinary AR and MA polynomials are represented by 𝜙(𝐵)

15

and 𝜃(𝐵), respectively. The uncorrelated random variable of ϵt is independently and

identically distributed with a mean of zero and a constant variance of 𝜎2 which is

generally denoted as WN (0, 𝜎2). The model parameters are generally estimated by

maximum likelihood estimation and the model errors should be normally distributed.

3.2 Exponential Smoothing Methods (ETS)

Exponential Smoothing is proposed by Holt in (1957), Brown (1959), and Winters

(1960). Exponential smoothing forecasts are weighted averages of previous

observations, with exponentially decreasing weights over time. This methodology

can also be used when there is seasonality and trend in the data (Hyndman et al.,

2021). Exponential smoothing can be done in a variety of ways. Some of these are

discussed further down.

3.2.1 Simple Exponential Smoothing

Brown (1959) proposed SES, which covers no trend and seasonality. This model is

commonly used for forecasting over a short period of time (Majeske et al., 1998).

The forecast equation is given below.

�̂�𝑡+1 = 𝛼𝑦𝑡 + (1 − 𝛼)𝑦�̂�.

(3.3)

A weight value 𝛼 is assigned to the most recent observation in the series 𝑦𝑡, the

smoothed value at the previous time to forecast 𝑦𝑡+1 at time t+1. The SES is based

on a weighted average of the previous level and the current observation, as shown in

Equation 3.3.

16

3.2.2 Holt’s Exponential Smoothing

Holt (1957) invented simple exponential smoothing with two parameters to estimate

data with a trend. Holt's exponential smoothing model consists of two equations:

trend and level. The method is intended for estimating data that includes a trend

component. The technique of the method is given in the following equations.

�̂�𝑡+ℎ = 𝑙𝑡 + ℎ𝑏𝑡,

(3.4)

𝑙𝑡 = 𝛼𝑦𝑡 + (1 − 𝛼)(𝑙𝑡−1 + 𝑏𝑡−1),

(3.5)

𝑏𝑡 = 𝛽∗(𝑙𝑡 − 𝑙𝑡1
) + (1 − 𝛽∗)𝑏𝑡−1,

(3.6)

where 𝑙𝑡 represents an estimate of the series' level at time t, 𝑏𝑡 is the difference

between level term at time t and t-1 and an estimate of the trend (slope) of the series

at time t. The smoothing parameters are α and 𝛽∗ which are between 0 and 1. The

forecast horizon is represented as h and the h-step forecast is provided in Equation

3.4 (Hyndman et al., 2021). As a result, the forecast is computed by multiplying

trend terms by the horizon and adding the level term.

3.2.3 Holt-Winters Exponential Smoothing

The Holt-Winters Exponential Smoothing Method is an exponential smoothing

theory utilized by Holt (1957) and Winters (1960) for the series with trend and

seasonality. This method contains three straightening techniques for level, trend, and

seasonality. There are two Holt-Winters Exponential Smoothing methods which

are Holt Winters Additive Method and Holt Winters Multiplicative Method.

17

If the series under the study represents additive seasonal pattern, Holt Winters

Additive Method is used. On the other hand, Holt Winters Multiplicative Method is

used when the series has a multiplicative seasonal pattern function (Ozdemir et al.,

2020).

3.2.3.1 Holt-Winters Additive Method

The Holt Winters Additive process is preferred when seasonal variations are

reasonably stable throughout the series (Hyndman et al., 2021). The equations

related to the model are given below.

(�̂�𝑡+ℎ) = 𝑙𝑡 + 𝑏𝑡ℎ + 𝑠𝑡−𝑚+(𝑘+1)

(3.7)

where,

Level: 𝑙𝑡 = 𝛼(𝑦𝑡 − 𝑠𝑡−𝑚) + (1 − 𝛼)(𝑙𝑡−1 + 𝑏𝑡−1)

 (3.8)

Trend: 𝑏𝑡 = 𝛽∗(𝑙𝑡 − 𝑙𝑡−1) + (1 − 𝛽∗)𝑏𝑡−1

 (3.9)

Seasonal: 𝑠𝑡 = 𝛾(𝑦𝑡 − 𝑙𝑡−1 − 𝑏𝑡−1) + (1 − 𝛾)𝑠𝑡−𝑚.

 (3.10)

The seasonal period is shown as m, the forecast horizon is represented as h, the

forecast values are (�̂�𝑡+ℎ), 𝑙𝑡 represents an estimate of the series' level at time t, 𝑏𝑡 is

the estimate of the trend of the series at time t. The seasonal component is shown as

𝑠𝑡, an integer confirming the seasonal component is shown as k in the equation

(Hyndman et al., 2021). The smoothed parameters are denoted by α, β, γ and these

smoothed parameters take values between 0 and 1.

18

3.2.3.2 Holt-Winters Multiplicative Method

The Holt Winters Multiplicative method grasps the cases where the seasonal

variations in the data vary in proportion to the level of the series (Hyndman et al.,

2021). The equations related to the model are given below.

(�̂�𝑡+ℎ) = (𝑙𝑡 + ℎ𝑏𝑡)𝑠𝑡+ℎ−𝑚+(𝑘+1)

(3.11)

where,

Level: 𝑙𝑡 = 𝛼
𝑦𝑡

𝑠𝑡−𝑚
+ (1 − 𝛼)(𝑙𝑡−1 + 𝑏𝑡−1)

(3.12)

Trend: 𝑏𝑡 = 𝛽∗(𝑙𝑡 − 𝑙𝑡−1) + (1 − 𝛽∗)𝑏𝑡−1

(3.13)

Seasonal: 𝑠𝑡 = 𝛾
𝑦𝑡

(𝑙𝑡−1+𝑏𝑡−1)
+ (1 − 𝛾)𝑠𝑡−𝑚

(3.14)

The seasonal period is denoted by m, and the forecast horizon is denoted by h. The

forecasted values are �̂�𝑡+ℎ for h period, 𝑙𝑡 denotes a prediction of the series' level

at time t, 𝑏𝑡is an estimate of the series' trend at time t, 𝑠𝑡 is a seasonal component, k

represents an integer that confirms the seasonal component (Hyndman et al., 2021).

The smoothing parameters are between 0 and 1, which are 𝛼, 𝛽∗ and 𝛾. All these

parameters are incremented until the smallest MSE value is reached. All exponential

smoothing models require initial values for level, trend, and seasonal components.

19

3.3 Trigonometric Seasonal Models (TBATS)

The ultimate goal of Trigonometric seasonality, Box-Cox transformation, ARMA

errors, Trend and Seasonal components (TBATS) is to use the multiple techniques

to forecast time series data with complex seasonal patterns (De Livera et al., 2011).

The TBATS was developed by De Livera et al. (2011) using a combination of Box-

Cox transform, ARMA errors and trigonometric seasonal patterns to handle complex

seasonal patterns (Gos et al., 2020). The methodology used in TBATS modeling is

represented.

𝑦𝑡
(𝜔)

= {
𝑦𝜔

𝑡 − 1

𝜔
 𝜔 ≠ 0,

𝑙𝑜𝑔𝑦𝑡 𝜔 = 0,

(3.15)

𝑦𝑡
(𝜔)

= 𝑙𝑡−1 + ∅𝑏𝑡−1 + ∑ 𝑠𝑡−𝑚𝑖

(𝑖)
+ 𝑑𝑡

𝑇

𝑖=1

(3.16)

where 𝜔 is Box-Cox parameter, the original series 𝑦𝑡 is transformed using the Box-

Cox transformation in the first equation. The transformed series 𝑦𝑡
(𝜔)

can be

extended by following equations.

𝑙𝑡 = 𝑙𝑡−1 + ∅𝑏𝑡−1 + 𝛼𝑑𝑡,

(3.17)

𝑏𝑡 = (1 − ∅)𝑏 + ∅𝑏𝑡−1 + 𝛽𝑑𝑡,

(3.18)

𝑠𝑡
(𝑖)

= 𝑠𝑡−𝑚𝑖

(𝑖)
+𝛾𝑖𝑑𝑡,

(3.19)

20

𝑑𝑡 = ∑ ∅𝑖𝑑𝑡−𝑖
𝑝
𝑖=1 + ∑ 𝜃𝑖𝜖𝑡−𝑖 + 𝜖𝑡

𝑞
𝑖=1 ,

(3.20)

where 𝑙𝑡 is the local level in period t, b and 𝑏𝑡 are the long-run and short-run trends,

and the trend damping parameter is shown as ∅ and the smoothing parameters in the

concept of BATS are α, β and 𝛾𝑖 for i= 1, …, T. In addition, 𝑑𝑡 follows an ARMA

(p, q) process and 𝜖𝑡 is a Gaussian white noise process with mean equal to 0 and

constant variance equal to 𝜎2 (De Livera et al., 2011). The seasonally trigonometric

component is depicted by the following equations.

𝑠𝑡
(𝑖)

= ∑ 𝑠𝑗,𝑡
(𝑖)𝑘𝑖

𝑗=! ,

(3.21)

𝑠𝑗,𝑡
(𝑖)

= 𝑠𝑗,𝑡−1
(𝑖)

𝑐𝑜𝑠𝜆𝑗
(𝑖)

+ 𝑠𝑗,𝑡−1
∗(𝑖)

𝑠𝑖𝑛𝜆𝑗
(𝑖)

+ 𝛾1
(𝑖)

𝑑𝑡,

(3.22)

𝑠𝑗,𝑡
∗(𝑖)

= −𝑠𝑗,𝑡−1𝑠𝑖𝑛𝜆𝑗
(𝑖)

+ 𝑠𝑗,𝑡−1
∗(𝑖)

𝑐𝑜𝑠𝜆𝑗
(𝑖)

+ 𝛾2
(𝑖)

𝑑𝑡,

(3.23)

𝜆𝑗
(𝑖)

=
2𝜋𝑗

𝑚𝑖
.

(3.24)

The above equations show a Fourier series-based trigonometric representation of

seasonal components and 𝛾1
(𝑖)

, 𝛾2
(𝑖)

 and 𝜆𝑗
(𝑖)

= 2𝜋𝑗/𝑚𝑖 are the smoothing parameters.

The stochastic level of 𝑖𝑡ℎ seasonal component is defined by 𝑠𝑗,𝑡
(𝑖)

 and the stochastic

growth required to describe seasonal variations in the seasonal component is defined

by 𝑠𝑗,𝑡
∗(𝑖)

.

21

3.4 Support Vector Machine

Support vector (SV) machines are supervised learning models that examine data for

classification and regression analysis which comes with associated learning

algorithms. Boser et al. (1992) developed the SV machine in its current form at

AT&T Bell Laboratories.

The following concept has been conceptually executed by the machine: The input

vectors are non-linearly mapped to a feature space with a high dimension. As a result,

Cortes et al. (1995) constructed a linear decision surface in feature space. SVM

attempts to find a hyperplane to correctly divide a given training set and maximize

the greatest distance on both sides of the data input between the closest illustrations

to the hyperplane. Although SVM's working logic appears to be better suited to

solving classification problems, the SVM algorithm which was converted to

regression problems is also very powerful for solving the time series problems. The

technique of SVR is based on the structured risk minimization principle and aims to

minimize an upper bound of the generalization (Pai et al., 2010).

In the given a set of data (𝑥𝑖, 𝐴𝑖)𝑖=1
𝑁 , where 𝑥𝑖 is the input vector, 𝐴𝑖 is the actual

vector and N is the total number of data patterns. The general expression of the

regression function is as follows:

𝐺 = 𝑤𝜙(𝑥𝑖) + 𝑏

(3.25)

The property of the inputs is denoted by 𝜙(𝑥𝑖), and the coefficients are weights and

bias. The coefficients 𝑤𝑖 and b are obtained by minimizing the regularized risk

function given in Equation 3.26.

𝑃(𝐺) = 𝐶
1

𝑁
∑ 𝐿Ɛ(𝐴𝑖 , 𝐺𝑖) +

1

2
‖𝑤‖2

𝑁

𝑖=1

22

(3.26)

where,

𝐿Ɛ(𝐴𝑖,𝐺𝑖) = {
0, 𝑖𝑓 |𝐴𝑖 − 𝐺𝑖| ≤ Ɛ

|𝐴𝑖 − 𝐺𝑖| − Ɛ, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3.27)

The penalty function and the error term in the equation are the cost, C and Ɛ

parameters, respectively. For each training observation, the penalty function applies

a penalty, if the error terms are larger than ± ε via insensitive loss function (Ozdemir

et al., 2020). The error term illustrates the difference between actual values and

values calculated by the regression function.

Minimizing the cost functions can be solved by the Lagrange theory. In the Lagrange

theory, the multipliers of Lagrange satisfy the equality 𝛽𝑖 ∗ 𝛽𝑖
∗ = 0. These multipliers

are determined by the regression hyperplane's optimal weight vector which is

represented below.

𝑊∗ = ∑ (𝛽𝑖 − 𝛽𝑖
∗)𝐾(𝑥, 𝑥𝑖)𝑁

𝑖=1 .

(3.28)

In the nonlinear problem, the regression function is obtained for the unknown data

point below.

𝐺(𝑥, 𝛽, 𝛽∗) = ∑ (𝛽𝑖 − 𝛽𝑖
∗)𝐾(𝑥, 𝑥𝑖)𝑁

𝑖=1 + 𝑏,

(3.29)

where 𝐾(𝑥𝑖 , 𝑥𝑗) is a kernel function, whose value equals the inner product of two

vectors which are 𝑥𝑗 , 𝑥𝑖, Φ given in the Equation 3.26, transforms the input vectors

𝑥𝑗 , 𝑥𝑖 into a high dimensional space. Kernel function is introduced to be able to

create non-linear hyperplanes and separate complex structures in the series. There

23

are several Kernel functions which are Gaussian Kernel Radial Basis Function

(RBF), Linear, Sigmoid and Polynomial, which affect the accuracy of SVR

(Bouzerdoum et al., 2013).

3.5 Random Forest

Breiman (2001) proposed the Random Forest, which is a gathering of regression

trees, each identified in a bootstrap sample of the raw data. It relies on an ensemble

learning method for classification and regression and works by constructing multiple

decision trees without replacement at training time. Random Forest has been used

for various purposes such as weather forecasting, solar radiation forecasting, and

biostatistics (Naing et al., 2015).

Random forest consists of two principles: bagging and random subspace method

(RSM), which is executed for each node of the classification and regression tree

(CART) (Breiman, 2001). Not only the training data, but also the input variables are

arbitrarily chosen when constructing each decision tree classifier or decision tree

regressor (Géron, 2019). The procedure of Random Forest is as follows: X denotes

the training dataset of dimension N x n, where N denotes the number of observations,

and n is the number of input features, the random subset with n’ is initially created

using replacement sampling technique which is bootstrapping to generate individual

decisions (Yu et al., 2017).

The target values of the training dataset with dimension N x 1 are represented by Y,

and the number of trees in the model is represented by L. Each decision tree in the

RF is denoted by 𝑇𝑖, where 𝑖 = 1, … , 𝐿. The number of features chosen at random

in each node of the decision tree is p features out of m (Qiu et al., 2017). The value

of p can be selected as √𝑚 (James et al., 2021) for the classification problem and

m/3 (Liaw et al., 2002) for the regression problem.

24

Firstly, in the RF algorithm, the training set is created by sampling B times from all

observations, with 𝑇𝑖 replacement for each decision tree. To calculate the best split

criterion for 𝑇𝑖, m randomly selected features are used in each node of one decision

tree and this step repeated until the decision tree is large enough.

The average of each tree's forecasts applied to the original data yields the final

forecast. In a regression problem, the mean or median of the outputs is calculated,

while in a classification problem, the majority rule is applied (Naing et al., 2015).

For classification problem: 𝑓(𝑥)= majority vote (𝑇𝑏(𝑥))1
𝐵

(3.30)

For regression problem: 𝑓(𝑥) =
1

𝐵
∑ 𝑇𝑏(𝑥)𝐵

𝑏=1 .

(3.31)

3.6 Extreme Gradient Boosting (XGBoost)

The boosting algorithm is an ensemble learning algorithm proposed by Schapire

(1990). The aim of the boosting algorithm is to construct a strong classifier from

weak classifiers in the series by using the decision trees iteratively, so it is dealing

with the bias-variance trade-off which has an ability to minimize the variance of the

predicted parameter between samples by increasing the predicted parameter's

deviation.

The boosting method has been used to develop many algorithms. The Gradient

Boosting algorithm, which is among the developed methods, was also suggested by

Friedman (2001). Gradient Boosting is a machine learning algorithm that combines

Gradient Descent and Boosting. Gradient Boost comprises three major components:

an additive model, a loss function, and a weak learner (Guelman, 2012). In order to

optimize the cost function, the algorithm iteratively chooses a function (weak

hypothesis) that points in the negative gradient direction and this process is iterated

https://www.mygreatlearning.com/blog/bias-variance-trade-off-in-machine-learning/

25

until convergence has been obtained and the last decision has been made (Ribeiro et

al., 2020). In the Gradient Boost method, prediction is obtained by averaging the

regression estimates. In classification estimation, the majority rule is used for

classification tasks.

XGBoost, which was proposed by Chen et al. (2016) is an implemented gradient

boosting decision tree-based algorithm that can build boosted trees quickly and in a

linear way (Li et al., 2019). XGBoost supports both Classification and Regression

Trees (CART) and linear classifiers as base classifiers. The loss function is expanded

by XGBoost using a second-order Taylor expansion (Li et al., 2019). The XGBoost

model can be shown as a formula.

𝑦�̂� ≔ ∑ 𝑓𝑘(𝑥𝑖), 𝑓𝑘𝜖 𝐹

𝐾

𝑘=1

(3.32)

where K is the number of trees and F represents all regression trees, 𝑓𝑘 illustrates one

regression tree, the predicted value is shown as 𝑦�̂�.

The objective function is given below.

𝑂𝑏𝑗(𝑡) = ∑ 𝑙(𝑦𝑖, 𝑦�̂�
(𝑡)

) + ∑ Ω(𝑓𝑡) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑡

𝑖=1

𝑛

𝑖=1

(3.33)

where l is loss function which enables to measure the difference between prediction

𝑦�̂� and real value 𝑦𝑖. Ω is the regularization term, which defines the complexity of

the model, and it is used for avoiding the over fitting. It is calculated as follows.

Ω(𝑓) = 𝛾𝑇 +
1

2
𝜆‖𝑤‖2

26

(3.34)

where, T is the number of leaf nodes and w is the score represented by the leaf nodes.

The aim of training minimizes loss of an objective function. The loss function is

enlarged utilizing Taylor expansion in XGBoost. The final objective function is

represented below.

𝑂𝑏𝑗(𝑡) ≅ ∑ [𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)] + Ω(𝑓𝑡)

𝑛

𝑖=1

(3.35)

= ∑ [𝑔𝑖𝑤𝑞(𝑥𝑖) +
1

2
ℎ𝑖𝑤𝑞(𝑥𝑖)

2] + 𝛾𝑇 + 𝜆
1

2

𝑛

𝑖=1

∑ 𝑤𝑗
2

𝑇

𝑗=!

(3.36)

= ∑[(∑ 𝑔𝑖)𝑤𝑗 +
1

2
(∑ ℎ𝑖 + 𝜆)𝑤𝑗

2] + 𝛾𝑇
𝑖𝜖𝐼𝑗𝑖 𝜖 𝐼𝑗

𝑇

𝐽=1

(3.37)

𝑔𝑖 = ∂
𝑦(𝑡−1)̂ 𝑙 (𝑦𝑖 , 𝑦𝑖

(𝑡−1)̂
) , ℎ𝑖 = ∂

𝑦(𝑡−1)̂
2 𝑙 (𝑦𝑖 , 𝑦𝑖

(𝑡−1)̂
).

(3.38)

The first-order derivative and second-order derivative of each data point in the error

function, respectively, are 𝑔𝑖 and ℎ𝑖. 𝐼𝑗 the index set of samples on each leaf node j

(Yu et al., 2021).

The formula of calculating the optimal value is as follows below.

𝐿(𝑡)̃(𝑞) = −
1

2
∑

(∑ 𝑔𝑖𝑖∈𝐼𝑅
)

2

∑ ℎ𝑖𝑖∈𝐼𝑅
+λ

𝑇
𝑗=1 −

(∑ 𝑔𝑖𝑖∈𝐼)2

∑ ℎ𝑖𝑖∈𝐼 +λ
− γ .

27

(3.39)

3.7 Artificial Neural Network

Artificial neural networks (ANNs), also known as neural networks (NNs) are data

processing systems associated with biological neural networks derived from natural

brains (Hardesty, 2017). In terms of design, the connectivity of many autonomous

individual processing elements in the neural network model works in a similar way

to the interconnections of individual cells in the brain in some ways (Brockett et al.,

1994). An artificial neural network (ANN) is made up of artificial neurons, which

are a collection of connected units or nodes that resemble the neurons in a biological

brain. ANNs imitate the way our brains work and predict or classify the features.

In the A part of Figure 3.1, the chemical inputs from the dendrites are converted into

electrical signals by the nucleus. Through the axon terminals, the signal passes on to

the next neurons. Edges are the terms for the connections (Kim et al., 2018). The

weight of neurons and edges is typically adjusted as learning progresses. The signal

strength at a connection can be changed by the weight.

The weights, biases, and activation functions transform the input values in a node

and the perception's output values are passed onto the next activation functions in

part B.

In the C part, the general structure of the ANN is given, it consists of three parts:

input layer, hidden layers, and output layers. Data is introduced to the network

through the input layer and the information in the data is processed in the hidden

state. Eventually, the output layer represents the measured value based on the inputs

(Samsudin et al., 2010).

28

Figure 3.1. The Structure of Neural Network (Kim et al., 2018)

First, ANNs have shown that, unlike traditional model-based methods, it does

not have any prior assumptions of the model form required in the model building

process. Second, ANNs can be widely applied in various situations. It also performs

by extrapolating previous behavior patterns instances to forecast future nonlinear

models and a predefined nonlinear model. Third, nonlinear methods have been used

to create ANNs. It has been revealed that a network can perform nonlinear modeling

without having to approximate any continuous function to any prior knowledge

about feature relationships (Zhang et al., 1998).

Figure 3.2. The General Concept of Artificial Neural Network (Chughtai et al., 2008)

29

As illustrated in Figure 3.2, the working structure of ANN consists of three steps:

multiplication, summation, and activation. A unit gets inputs which are multiplied

by the weights and the weighted inputs are gathered together in the second step. Next,

to adjust the threshold of the transfer function called as an activation function, a bias

term is added. The activation function converts the sum of the weighted inputs and

bias into the outcome in the final step. The status of the neuron within the network

identifies the type of activation function (Zhang et al., 1998). The model equation is

given below.

𝑦𝑡 = 𝑤0 + ∑ 𝑤𝑗 . 𝑔

𝑞

𝑗=1

 (𝑤0𝑗 + ∑ 𝑤𝑖𝑗 . 𝑦𝑡−𝑖

𝑝

𝑖=1

) + 𝜖𝑡

(3.40)

where i = 0, 1, 2, ..., p; j = 1, 2, ..., q; 𝑦𝑡 is the output, 𝑦𝑡−1, ..., 𝑦𝑡−𝑝, are inputs, 𝛼𝑗

and 𝛽𝑖𝑗 are model parameters that are connection weights; the number of input nodes

is called p and q is the number of hidden nodes and the hidden layer is represented

as g. The activation function will identify the empirical formula of the ANN and the

network's non-linearity. There are several types of activation functions which are

non-linear such as logistic or sigmoid Equation 3.42 and hyperbolic functions. Also,

other activation functions which are linear, and quadratic can also be used for the

different modeling applications. The sigmoid function converts the values into a

range of 0 to 1.

𝑠𝑖𝑔(𝑥) =
1

1+exp (−𝑥)
.

(3.41)

Dynamic and static ANNs are the two major categories of ANNs. The ANN is

referred to as a static network if the output signals are generated directly from the

given input. It is said to be dynamic when the network's output is the input of ongoing

and prospective neurons (Lewis, 2016).

30

The learning process is a critical component of the model’s success which is called

‘back propagation’. In this algorithm, the weights are updated and have been

initialized either randomly or certain techniques such as Gradient Descent

Algorithm. It enables minimizing by the help of the loss/errors of training any NN

(Nielsen, 2015).

3.7.1 Feed-Forward Neural Network

The static neural network described in the previous section is the neural network

where outputs are generated by the inputs without feedback. A feed forward neural

network (FNN) which is a static neural network, is a type of neural network in which

the nodes' contacts do not form a cycle (Ozdemir et al., 2020).

The single layer feed forward neural network and the multi-layer feed neural network

are the two parts of this neural network. The single layer feed forward neural network

has two layers which are input and output layers. The multi-layer feed forward neural

networks have three layers which are input layer, hidden layer and output layer.

Figure 3.3 demonstrates the network design of a multi- layer feed forward neural

network. The working mechanism in both models is forward: data continues to flow

from the input nodes to the output nodes, passing through any hidden nodes. Single

hidden layer feed forward neural networks are the most widely used model for time

series and forecasting compared to multi-layer feed forward neural networks. It can

be applied to forecast one step ahead values (Zhang, 2003).

31

Figure 3.3. The Structure of Feed Forward Neural Network (Ozel et al.,2009)

3.7.2 Long Short-Term Memory

A typical feed-forward neural network may not be a good option for time series

forecasting since it assumes the independence of both train and test data, and it needs

fixed length input and output. Recurrent Neural Network arises as a solution for this

problem by using feedback connection to account for earlier states in addition to the

current input before producing the final output. In this process, a duplicate of the

previous values for the layer containing the recurrent nodes is saved, and they are

then used as an additional input for the following phase. This allows the network to

display dynamic temporal behavior for a given time sequence. However, this

structure suffers from long term dependency because the gradients approach to zero

during the training. This problem is called the vanishing gradient problem.

The long short-term memory (LSTM), a variation of Recurrent Neural Network, is a

solution to this gradient problem explained above. LSTM has feedback connections,

so it can learn long-term dependencies, which is effective in sequence prediction and

classification and has a structure of simple repeated secrets.

LSTM was established by Hochreiter and Schmidhuber in 1997 to overcome the

issue of optimum gradients and non-convergence in RNN (Hochreiter et al.,1997).

LSTM expertise in many fields such as robot control (Mayer et al., 2006), time series

32

prediction (Schmidhuber et al., 2005), speech recognition (Graves et al., 2005),

human action recognition (Baccouche et al.,2011).

A classic LSTM network consists of cells, which are memory blocks. In an LSTM

cell there are forget, input and output gates. The memorization process can be

controlled by LSTM's gating mechanism. Gates that open and close provide for the

storage, writing, and reading of data in LSTMs. The forget gate determines whether

to remove existing data and the input gate determines how much new data will be

added to the memory. Finally, the output gate determines whether the cell's present

value relates to the output (Siami-Namini et al., 2019).

The Feed Forward neural network has two assumptions which independence with

train and test dataset and transformation to vector. Because of this reason, time series

forecasting by using a feed forward neural network is not an appropriate approach.

Recurrent Neural Network which is appropriate for time series analysis can handle

the sequential dataset since its architecture of uses the previous layers and feeds the

signals both forward and backward. Inputs with forward and backward feed the

model by using RNN. Therefore, the working mechanism of NN models is like AR

models (Krenker et al., 2011). In general, in LSTM, it performs well in time series

data as the behavior of historical data is kept in memory (Bilgili et al., 2022).

A hidden vector, h, and a memory vector, m, are maintained in an LSTM, and they

control state updates and outputs at each time step, respectively. The structure of

LSTM is shown in Figure 3.4.

33

Figure 3.4. The Structure of the Long Short-Term Memory (LSTM) Neural

Network (Yan, 2017)

In the forget gate, the sigmoid function is used to determine what information is

required based on the values of ℎ𝑡−1 and 𝑥𝑡. The output of this gate is 𝑓𝑡 and is a

value between 0 and 1. Output 0 means getting rid of the learned value completely,

if 1 holds values.

This result is calculated as follows:

𝑓𝑡 = 𝜎(𝑊𝑓ℎ[ℎ𝑡−1], 𝑊𝑓𝑥[𝑥𝑡], 𝑏𝑓)

(3.42)

where 𝑏𝑓 is called the bias value, 𝑊𝑓ℎ is the weight of the previous hidden state and

𝑊𝑓𝑥 is the weight of the input. In the input gate, there are two different layers which

34

are sigmoid and tanh layer. The sigmoid layer determines which values will be

updated and tanh layer generates a new value which will be stored in the memory

(Siami-Namini et al., 2019). These layers can be calculated as follows.

𝑖𝑡 = 𝜎(𝑊𝑖ℎ
[ℎ𝑡−1], 𝑊𝑖𝑥

[𝑥𝑡], 𝑏𝑖),

(3.43)

𝑐𝑡 = tanh(𝑊𝑐ℎ
[ℎ𝑡−1], 𝑊𝑐𝑥

[𝑥𝑡], 𝑏𝑐).

(3.44)

In the output gate, the sigmoid layer is used to understand which information in the

memory contributes to the output. The values between -1 and 1 are then mapped

using a non-linear tanh function, and finally is multiplied by both (Siami-Namini et

al., 2019). The equation of the final step is given below.

𝑜𝑡 = 𝜎(𝑊𝑜ℎ
[ℎ𝑡−1], 𝑊𝑜𝑥

[𝑥𝑡], 𝑏𝑜).

(3.45)

ℎ𝑡 = 𝑜𝑡 ∗ tanh (𝑐𝑡).

(3.46)

3.7.3 Bayesian Regularized Neural Network

While optimizing Artificial Neural Network models, it is attempted to reduce error

values by changing the weights. However, this method can sometimes lead to

overtraining or overfitting issues (Guelman, 2012). To reduce overfitting, the

Bayesian regularization method was developed for nonlinear systems (Burden et al.,

2008).

35

The sum of squared error is between the model output and the target value. In the

training part, it is expected to have a low SSE because of this reason Bayesian

regularization term is added to this equation (Guelman, 2012).

𝐹 = 𝛽𝐸𝐷 + 𝛼𝐸𝑊

(3.47)

where F denotes the objective function, the sum of squared errors is shown as 𝐸𝐷,

the sum of squares of the network weights is illustrated as 𝐸𝑊. The objective

parameters are α and β.

The weights of networks whose density function is written in Bayes rule are

contemplated as random variables, the weights of networks are considered (Dan

Foresee et al., 1997). The probability density function of the weight of networks is

calculated with given data as follows.

𝑓(𝑤|𝐷, 𝛼, 𝛽, 𝑀) =
𝑓(𝐷|𝑤, 𝛽, 𝑀)𝑓(𝑤|𝛼, 𝑀)

𝑓(𝐷|𝛼, 𝛽, 𝑀)

(3.48)

where D denotes the observed data and M is a particular neural network. The prior

density is P(w|α, M), which covers the knowledge of the weights. The likelihood

function is P (D| w, β, M), which is the probability of the data occurring given the

weights. P (D| α, β, M) is a normalization factor (Burden et al., 2008). Assuming that

the noise in the data is normal, the density function was determined for the weights.

In this condition, given the parameters w, the probability of the data is given by

below.

𝑓(𝐷|𝑤, 𝛽, 𝑀) =
exp (−𝛽𝐸𝐷)

𝑍𝐷(𝛽)

(3.49)

36

where 𝑍𝐷(𝛽) = (
2𝜋

𝛽
)𝑁/2, 𝛽 = 1/𝜎2 .The density of prior can be shown as;

𝑓(𝑤|𝛼, 𝑀) =
exp (−𝛼𝐸𝑊)

𝑍𝑊(𝛼)

(3.50)

where 𝑍𝑤(𝛼) = ∫ exp (−𝛼𝐸𝑊). The last two equations are combined with

probability density function of the network weights. The optimal weights can

maximize the posterior probability by using the following equation.

𝑓(𝑤|𝐷, 𝛼, 𝛽, 𝑀) =
exp (−(𝛽𝐸𝐷 + 𝛼𝐸𝑊))

𝑍𝑊(𝛼)𝑍𝐷(𝛽)

(3.51)

where 𝑍𝑊(𝛼) = ∫ exp(−𝐹) 𝑑𝑤. The optimal weights which maximize the posterior

probability are obtained by Nguyen and Widrow algorithm, which starts with initial

weights and optimizes them via Gauss-Newton Algorithm (Nguyen et al., 1990).

3.8 Forecast Accuracy Measures

Forecast performance measures how well applied models can predict future values.

It is discovered by contrasting which model approach yields superior outcomes

because of performance metrics. The literature contains various types of

performance metrics. This study considered computation time, mean absolute

percentage error, and root mean square error.

3.8.1 Root Mean Square Error

While the RMSE measures the distance between two observed and predicted values,

it also measures the magnitude of the √(1/h) error by using the Euclidean distance

factor. In time series analysis, the root mean squared errors are the most chosen

37

performance metric (RMSE). The forecasting method has high accuracy if the RMSE

performance value is low. The expression of RMSE is given below.

𝑅𝑀𝑆𝐸 = √
1

ℎ
∑(𝑦𝑡 − �̂�𝑡)2

ℎ

𝑖=1

 (3.52)

where h is the number of forecasted points, 𝑦𝑡 is the actual value and the �̂�𝑡 is the

forecast value.

3.8.2 Mean Absolute Percentage Error

The advantage of the Mean Absolute Percentage Error (MAPE) is that it minimizes

the impact of positive and negative errors on one another, making it easier to

compare the forecast performance of various models. It is a widely used performance

metric for forecasting models and measuring the accuracy of time series; it

determines the absolute percentage error for each period (Charles et al., 2013).

The MAPE is represented by the equation below.

𝑀𝐴𝑃𝐸 =
1

ℎ
∑ |

𝑦𝑡 − �̂�𝑡

𝑦𝑡
|

ℎ

𝑡=1

(3.53)

where h is the number of forecast points, 𝑦𝑡 is the actual value, and the �̂�𝑡 is the

forecast value. The forecast technique has high accuracy if the MAPE value is low,

same with RMSE performance.

3.8.3 Computational Time

Computational time is also considered along with forecast accuracy measures.

Utilizing R's sys.time() function, the working time of the techniques mentioned for

38

each group is calculated in seconds. LSTM algorithm, Python is used and ipython-

autotime is implemented to measure the time it takes to execute each cell.

39

CHAPTER 4

4. ANALYSIS

In this chapter, the forecasting of the number of claims according to the month in

service groups (MIS) is performed using the warranty data of a company in the

automotive industry with the techniques described in Chapter 3. The properties of

the data set, the forecasted groups used in the study, and the implemented data

preprocessing techniques will be explained to present the specific details of the

analysis process. The 3-month numerical results for each model will be demonstrated

with visual and numerical examples and the accuracy of selected models for each

group will be assessed.

4.1 Dataset

The warranty data, which is formed by keeping the records of the malfunction

requests received under the warranty, illustrates the product quality and directly

affects many departments in the enterprise. In this study, the warranty dataset from

an automotive manufacturer covers three variables, which are the period of use of

the defective products by the customer (MIS), the total number of claims and the

time. The warranty contract of the product covers 2 years, so there is a total of

twenty-five months in service groups within the warranty period. The dataset

contains 44 monthly total number of claims for each MIS group from November

2021 to June 2022. There are a total of 1100 observations in the dataset, and these

observations cover the 44-month total error number of 25 different MIS groups.

40

If the product breaks down within a month of the warranty period beginning, it is in

MIS 0 group. If the product works fine in the first month but breaks down within the

second month of the warranty period, it is in MIS1 group, and so on. In other words,

for the MIS 0 group, the total number of claims from November 2021 to June 2022

is included, and the other MIS groups include the total number of failures in the same

time periods. For each MIS group, 3-month periods are forecast.

4.2 Data Preprocessing

Preprocessing aids in converting original data into a format suitable for modeling.

Data preparation, particularly in machine learning, enables the model to incorporate

the unidentified structure underlying the issue (Brownlee, 2020).

There are many data preprocessing techniques in the literature. These techniques can

be shaped according to the needs or assumptions of the models. Many preprocessing

techniques, such as Box-Cox transformation, power transformation, detrends, and

deseasonalization, help ensure the assumptions of some statistical time series

modeling methods, whereas some machine learning models can only be used with

standardized data. The preprocessing processes applied in this study were designed

according to the requirements of the models used. Moreover, all preprocessing

processes were performed for each MIS group themselves, and these techniques are

explained in detail below.

• Original Data: There has been no preprocessing applied to this data

set. The original dataset was used for the ARIMA model because the

required preprocessing for the ARIMA model such as differencing

for stationarity is already applied by the auto.arima function.

• Box-Cox Transformation: The Box-Cox transformation technique

was applied with the BoxCox function to assess the stationarity in

variance (Hyndman et al., 2021). The machine learning algorithms

41

utilized in this study can also deal with non-stationary variance. In the

traditional time series method, the tbats and auto.arima function

implement the Box-Cox transformation internally. Moreover, the

Box-Cox transformation was applied manually for the ETS model.

The nnetar function contains the lambda parameter which is used for

Box-Cox transformation.

• Min-Max Scaling: In this study, scaling was applied before applying

LSTM, XGBoost, RF and SVM. In addition, the Bayesian

Regularized Neural Network and Feed-Forward Neural Network

functions implemented in R in this study, apply scaling within

themselves. The formula for Min-Max scaling is given below.

𝑦𝑚𝑎𝑥 and 𝑦𝑚𝑖𝑛 are the minimum and maximum values respectively,

𝑦𝑡 is the actual value at time t and 𝑦𝑡
′ is the observations scaled value

at time t.

𝑦𝑡
′ =

𝑦𝑡−𝑦𝑚𝑖𝑛

𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛
.

(3.54)

• Time Delay Embedding: Machine learning methods cannot account

for the time series' autocorrelation property the way statistical

methods can. Time delay embedding, also known as sliding window,

is a technique for converting a time series into a matrix of time-

dependent datasets (Von Oertzen et al., 2009). By converting a long

data series into short time-dependent segments, time dependency is

brought to the forefront and the problem is solved. The average

number of lags was established as 5 in the ACF-PACF graphs within

each MIS group. The ACF-PACF graph can be found in Figure A.1.

Except Feed-Forward Neural Network, since the nnetar function

42

covers the finding best past lags itself. In this study, the lag number

in embedding matrices has been integrated into the models in

Random Forest, SVM, XgBoost, BRNN, LSTM techniques

accordingly.

• Splitting Datasets: For both statistical methods and machine

learning methods in each MIS group, the last 3 of 44 observations

were reserved as test data and the remaining data as training data. In

the implementation of all machine learning models, the last 20% of

the training data was used as validation data to tune the parameters of

models. The diagram of splitting dataset is given below. Then, the

tuned parameters were implemented onto all training data, including

validation, to forecast 3 months ahead in the test dataset. The

validation set remains static for each group.

Figure 4.1. The Diagram of Splitting Dataset

4.3 Model Implementation

All models except the LSTM model were installed via R. The dataset was converted

into a nested format according to the MIS groups in the model application part in R.

In the LSTM model implemented using Python, each MIS group is converted to list

43

format. Data pre-processing, data splitting, model construction, and parameter tuning

were constructed separately for each MIS group.

It is a challenge to provide a numerical explanation of the estimated parameter,

tuning parameter, total number of neurons and hidden layers of each model, as nine

models are implemented for each 25 groups separetely. Instead, the model

implementation section will go over the specifics and operation of statistical and

machine learning techniques on this data.

4.3.1 Statistical Models

In the statistical forecasting parts, ARIMA, ETS, and TBATS models were used to

forecast 3 months ahead of 25 different MIS groups. The assumptions of the models

were checked, and the features of the functions used were considered.

4.3.1.1 ARIMA

As it is explained in the methodology chapter, the forecast is made after the trend is

eliminated. To predict future periods, the autoregressive model (AR) first determines

how many lagged series are necessary for addition to the parameter p. The series is

intended to become stationary by using the difference(I) as the d parameter in the

second section. The equation is then completed by the addition of the moving

average model (MA), the q parameter, and the number of lags forecasts errors. The

model is constructed using the original dataset because the ARIMA function

incorporates a Box-Cox transformation within itself by using lambda="auto"

argument in the auto.arima function. While the model is being constructed, the

appropriate AR and MA components are the ones that minimize the Corrected

Akaike Information Criterion (AICc), which is the default criteria in the auto.arima

function. The expression of AICc is given below.

𝐴𝐼𝐶𝑐 =
2𝑘𝑛

𝑛 − 𝑘 − 1
− 2 ln(�̂�).

44

(3.55)

The series length, the number of parameters to be predicted, and the maximum value

of the likelihood function using the observed data, are indicated by n, k, and �̂�

correspondingly. The auto.arima function used selects the best model that minimizes

the chosen information criterion and estimates the parameters of the model using

Maximum Likelihood Estimation. Hence, the normality assumption is crucial.

4.3.1.2 ETS

In this study, the ets function in R has been used to establish the ETS model. The

ETS model can distinguish between addition and multiplication as the model's type

using a function that utilizes exponential smoothing methods. The best model is

selected using the ets function relies on the AIC, AICc, and BIC criteria minimizing.

The normality assumption was confirmed before the model was constructed, and

Box-Cox transformation was used for non-normal series (Svetunkov, 2022).

4.3.1.3 TBATS

TBATS model is a technique that includes trigonometric seasonality, Box-Cox

transformation, ARMA errors, trend, and seasonal components. The best model is

selected according to the lowest AIC value. This model is implemented via R with

the tbats function.

4.3.2 Machine Learning Models

In the machine learning forecasting part, Support Vector Machine, Random Forest,

Bayesian Regularized Neural Network, Feed Forward Neural Network, XgBoost,

and LSTM models were utilized to forecast 3 months ahead of 25 different MIS

groups. The lag number was set to 5 in the time embedding matrix for all machine

learning techniques. As previously stated, since many MIS groups are predicted, the

45

models cannot be expressed numerically. Instead, the principles of their general

application will be explained.

4.3.2.1 Support Vector Machine

The SVM model setup utilized the train function from the caret package. SVM

kernel parameter was assessed to constitute radial basis function and the method was

chosen as svmRadial for all MIS groups. Moreover, two hyperparameters in this

function can be tuned, which are the cost parameter, which can be defined as the

penalty term in SVM, and the gamma parameter, which controls the effect distance.

The optimal parameters of the model are obtained each series separately by using the

train function in the caret package.

4.3.2.2 Random Forest

Random Forest model was established by using randomForest function in R. The

parameters utilized in the function are mrty and ntree. Since the time lag number is

5, the mtry value is taken from 1 to 4, and the ntree value is determined from 200 to

2100. The parameters that provide the minimum MAPE and RMSE value for each

MIS group are provided by the tuneRF function and defined as the best parameter.

4.3.2.3 XgBoost

The caret package's train function's "xgbTree" method was used to implement the

XGBoost model. Model tuning parameters assist to find the best model on its own

via the train function. Tuning has been done on the Caret package's boosting iteration

(nrounds), max tree depth (max depth), shrinkage term (eta), minimum loss reduction

(gamma), subsample ratio of columns (colsample by tree), and subsample percentage

(subsample) parameters.

46

The ranges determined for these parameters are defined by the expand.grid function.

The eta helps to avoid overfitting problem and its range is from 0 to 1. In this study,

it is chosen on (0.02, 0.025, 0.001) interval. The gamma parameter indicates the

minimal loss reduction necessary to split. Three numbers were generated with the

gamma parameter being uniform from 0 to 4. In this study, boosting iterations, which

is nround, from 100 to 800 were selected by 100 increments. Subsample ratio of

columns parameter supplies to select subsample when constructing the tree. The

range of colsample_bytree is 0, 0.1, and 0.2. Although the maximum depth of the

tree is default 6, and it is used (1, 2, 3) interval in this study. The minimum child

weight is that minimum sum of instance weight (hessian) needed in a child. The

values of minimum child weight are between 10 and 15. Subsample indicates the

percentage of each tree's observations that are drawn at random. In this study, three

values are applied in the range which is uniformly distributed from 0.7 to 1.

All specified parameter ranges have been tuned separately for each group, and the

caret function has been used to determine the optimum parameters, and models have

been developed.

4.3.2.4 Feed-Forward Neural Network

The Feed-Forward Neural Network model was constructed by using nnetar function

in R for each MIS group. A feed-forward neural network with one hidden layer

performs the function. The function itself calculates weights in the hidden layer.

However, the learning rate and epoch number information are not available for the

nnetar function. The parameters that can be tuned for this function are the number

of neurons and Box-Cox transformation. Neuron hyperparameter is tuned over Box-

Cox applied dataset. The number of neurons was taken from 1 to 5 and the number

of neurons providing the lowest RMSE value was selected for each MIS group.

Moreover, the number of lags is calculated within the function and the network is

trained for the given data utilizing back propagation, with all prior lags initiated as

inputs.

47

4.3.2.5 LSTM

The Long Short Term Memory method, in contrast to other models, was constructed

by using keras package in Python because it needs careful hyperparameter tuning

which is very limited in R. The time embedding was applied on each group, just like

in previous machine learning models, along with normalization and min-max scaling

procedures for each MIS group.

Input data sequence parameters are time step window and model batch size are 5 and

4 respectively. The time step window was used to create sequence length. In the

hyperparameter search parameters are tune epoch, max trials, which are 100 and 25

respectively. The target of the adjustment algorithm was determined as objective

val_loss, early stopping patience 10, learning rate reduce patience 2, learning rate

reduce factor 0.5.

In this study, many various layers, number of neurons, drop out and layer weight

initialization methods were applied. It was challenging to determine the ideal

architecture because each MIS group in the dataset had a limited observation and a

unique structure. In this study, the minimum error value in the experimentally

applied model parameters was reached in the model structure specified below.

The model was constructed using one LSTM layer. The hp.int() function, which

enables us to specify the space search of hyperparameters, was used to select the

optimal number of units within the layer. The relu activation function is used and the

number of cells is defined from 1 to 5 with a step of 1. Return sequence should also

be set to True since it allows another LSTM to use the output.

A drop layer was added after the layers were constructed to prevent the neural

network from over-learning. Neurons are randomly concealed in the dropout layer

based on the dropout rate. The hp.choice() function is used in this study to select

between 0.2, 0.4, 0.6 and 0.7 as the ideal dropout value. The range of drop out values

has been kept wide to prevent overlearning and underlearning while modeling 25

different MIS groups at the same time. The lstm layer was concatenated to one fully

48

connected layer. It is choosen an optimal value between 1-5 with a step of 1 and the

activation function is selected as relu. The learning rate is set as 0.01 or 0.1 with the

hp.choice() function. In the selected MIS groups, seven different weight initiation

methods from the layer weight initiator methods were applied. These are random

normal, random uniform, glorot normal, glorot uniform, variance scaling, zero-

weight initialized methods.

Glorot uniform initializer, also called Xavier uniform initializer, was used to set the

initial random weights of Keras layers, which outperformed most groups in the

applied methods. After adding the model to the last fully connected layer, the model

should be compiled. Three parameters are used for this step, loss, optimizer, and

metric. The term loss refers to the metric that will be used to indicate the model's

error in the training stage, which is chosen as mse in this study. The model is

evaluated using a metric called mape which resembles loss but is not utilized during

training.

The Adam optimization technique was proposed by Kingma et al. in 2014. This

method is based on adaptive estimations of lower-order moments and is used to

optimize stochastic objective functions with first-order gradients. They claimed that

their optimizer is computationally effective, ideal for issues with little memory

needs, lots of data, and/or many parameters, as well as suitable for the non-stationary

and noisy slope issues we encountered in our study (Kingma et al., 2014).

Adam optimizer was proposed in the car spare part demand forecast made in 2021

(Chandriah et al., 2021). It has been stated that it is difficult to predict since the

demand for automobile spare parts is constantly repeated. In this study, Adam

optimizer was used because the number of warranty claims has a non-stationary and

complex structure for each month in service group.

After compiling the model with the existing trial hyperparameters, it is defined keras

tuner object and the learning rate schedule and early stopping were determined.

49

The EarlyStopping function was implemented with three parameters: monitor,

patience, and mode, in Keras to help stop training when the model is no longer

developed. The monitor shows what the model will be stopped early by considered,

and the mode includes how the metric value we consider in the monitor should be

(min or max). Patience is the number of epochs without improvement after which

training will be early stopped. In this study, the monitor is defined val_loss, which

is the value of cost function. Patience is adjusted to stop early if training does not

improve within 10 epochs and mode is defined as minimum.

ReduceLROnPlateau which allows to reduce the learning rate when a particular

metric stop improving was used as the learning rate schedule. The three parameters

are implemented for the early stop function are also included in this function. In

addition, the factor parameter, which helps to reduce the learning rate, was added as

0.5 and the min_lr parameter was utilized as the lowest learning rate as 0.02 in the

study.

The dashboard of Weights&Biases is applied to illustrate loss, validation loss,

accuracy, validation accuracy and all metrics are recorded by using

WandbCallback() for each 25 MIS groups and all trial models are saved.

The optimal hyperparameter value for the dataset and models of all groups was

derived via Bayesian optimization.

For each of the 25 groups, the optimal hyperparameter values were identified, and

then 3-horizon prediction and inverse transformation were performed out on these

values.

4.3.2.6 Bayesian Regularized Neural Network

The Bayesian regularization for the feed-forward neural networks model with the

brrn function is configured separately for each of the 25 groups. Two-layer neural

networks can accommodate the function. The number of neurons is the only variable

in the package that can be altered. The model was constructed using the lowest

50

RMSE value for each group to determine the number of neurons, which ranged from

1 to 10. The number of epochs, 𝛼, 𝛽, 𝐸𝑑, and 𝐸𝑤 are tuned within the function. The

inputs and outputs are scaled within the function. The Gauss-Newton algorithm is

used to optimize the weights, which are given a normal distribution as the prior

distribution. The 25 different models are trained by using back propagation.

4.4 Empirical Analysis

4.4.1 Comparison of Modelling Performances

The performances of the nine models applied for each MIS group are evaluated in

this section, according to the RMSE and MAPE metrics. The structure of the models

and the methods used to prevent the models from overlearning are discussed. Also,

optimized parameter values while applying the models are given in Appendix B.

The forecasting performances of the implemented models in all MIS groups were

compared by applying non-parametric statistical tests for the MAPE metric and

considering the computational time of models. In this way, the company can easily

decide and implement the best model for the forecasting of the number of claims in

the warranty processes.

All months in services groups are, on average, non-stationary. The series in Figure

4.2 were selected depending on MIS groups with different patterns, as has been seen

above, the groups are not, on average, stationary.

At certain points in time, the total number of claims for each group decreased

significantly. The most important reason is that the removal of many product series

from production and the commissioning of different series with new engines. This

change, which was applied from the production, was also reflected in the failure

request in the warranty data. This steep decline in MIS groups and the short time

interval in the data adversely affected the performance of the models.

51

Figure 4.2. The Time Series Plots of MIS 0, MIS 10, MIS 16 and MIS 24

In the first figure, the MIS 0 group exhibited a significant drop in the first half of

2019, whereas the MIS 10 group declined after the first half of 2019. Although the

MIS 16 group had ups and downs from 2019 to the end of 2020, there was a decline

after the first half of 2020. Lastly, the number of claims in the MIS 24 showed a

considerable increment in the last quarter of 2020, then represented a sharp decrease

in 2021 and 2022.

It is also observed from the graph that the steep decline in MIS 24 is observed later

than MIS 0. This is because it takes time for MIS groups to reflect the actions taken

during the production phase. While its reflection to MIS 0 can be seen right away,

its reflection to MIS 24 requires longer time. The impact of groups on each other is

excluded because the product's month of use is assessed when determining product

quality.

Table 4.1. and Table 4.2. present the RMSE and MAPE values for test data of both

statistical and machine learning methods applied to the 25 months in services group,

52

respectively. The MAPE values for the train data of the machine learning methods

applied to 25 months, respectively, in the services group are in Table 4.3.

Table 4.1. The MAPE of All Methods of Test Dataset for each MIS Group

MIS ARIMA ETS TBATS SVM RF XGBoost NNETAR LSTM BRNN

0 40.51 37.08 36.50 47.65 43.39 50.33 41.17 44.25 54.79

1 18.80 26.63 26.66 23.67 30.96 24.13 42.01 33.59 23.49

2 65.87 33.84 33.17 34.22 17.68 28.24 63.75 38.82 21.73

3 10.31 11.40 11.55 20.04 16.51 45.09 15.35 23.78 21.32

4 4.76 15.25 13.33 29.32 3.27 44.75 10.23 53.70 28.90

5 28.62 33.85 28.24 28.23 3.75 49.37 20.46 60.52 23.30

6 31.58 46.77 46.99 29.98 9.59 31.77 13.63 45.92 29.85

7 21.74 29.24 28.47 43.46 9.95 38.09 26.72 46.83 21.42

8 13.08 15.25 10.51 16.62 3.98 39.04 13.49 40.76 21.20

9 21.84 36.16 35.78 42.10 5.84 31.38 43.57 32.85 16.72

10 41.89 79.09 78.45 33.77 9.59 28.05 40.76 16.79 30.16

11 31.45 36.78 36.62 22.90 29.30 20.90 22.64 28.07 24.49

12 16.80 18.91 21.38 15.14 26.41 33.62 16.89 28.20 16.97

13 29.86 45.59 55.47 14.81 15.42 18.81 20.79 20.61 24.64

14 21.80 14.67 14.68 9.41 8.87 21.54 15.30 21.75 13.99

15 76.98 32.81 32.75 29.79 24.84 37.41 22.10 21.65 27.53

16 26.14 35.95 35.95 24.04 23.56 34.15 34.84 30.27 23.45

17 25.88 8.98 9.29 70.76 14.79 32.38 30.74 34.10 24.82

18 44.54 22.22 21.59 28.17 18.89 24.89 54.69 22.46 28.79

19 10.92 10.58 8.35 19.20 11.89 18.87 41.00 12.82 17.05

20 36.35 57.27 48.67 27.00 2.53 27.45 42.11 23.69 21.90

21 27.77 43.30 43.30 26.89 12.88 16.42 18.79 14.97 26.74

22 30.64 38.00 37.93 15.57 6.87 17.67 28.90 9.40 9.75

23 21.25 17.00 17.37 17.69 21.60 20.78 22.96 58.47 23.56

24 27.37 38.83 38.35 24.17 10.25 23.30 15.37 30.32 25.20

53

Table 4.2. The RMSE of All Methods of Test Dataset for each MIS Group

MIS ARIMA ETS TBATS SVM RF XGBoost NNETAR LSTM BRNN

0 12.03 11.13 10.88 11.25 11.68 10.99 11.58 12.07 11.57

1 46.66 54.36 54.63 58.51 50.28 66.79 68.10 79.97 57.28

2 114.53 96.88 94.31 65.02 32.44 62.31 110.95 76.22 41.20

3 35.04 38.04 37.34 54.33 38.69 111.30 42.46 63.84 65.12

4 14.76 33.67 30.19 72.95 9.25 110.57 26.58 132.38 74.72

5 78.33 66.48 58.11 74.62 9.75 128.81 63.57 157.32 63.11

6 80.53 79.90 80.13 87.49 23.99 81.44 42.82 112.97 87.00

7 52.84 52.84 51.96 95.63 21.48 84.63 64.58 100.39 47.50

8 30.10 30.11 22.56 38.10 9.31 85.33 34.70 88.59 47.40

9 47.62 56.60 56.18 88.85 14.55 66.92 90.58 70.65 42.73

10 85.69 87.94 87.57 81.60 20.49 61.29 83.26 39.14 56.41

11 82.49 65.63 65.43 64.68 48.07 53.87 66.20 50.65 70.29

12 49.94 40.87 42.57 43.42 39.47 65.31 47.57 52.80 51.85

13 53.13 53.12 59.32 30.22 28.68 32.15 39.91 35.92 50.29

14 34.24 28.84 28.85 14.47 15.23 33.88 28.46 34.50 26.37

15 103.16 79.47 79.30 42.42 37.23 55.02 66.94 39.82 39.61

16 69.66 62.41 62.40 66.00 56.93 80.33 87.39 62.44 63.82

17 53.29 21.75 20.89 130.08 26.94 61.79 62.94 63.31 52.51

18 86.70 39.09 38.12 66.52 35.82 57.13 99.17 43.09 59.11

19 18.23 18.23 19.55 40.15 19.99 38.14 76.07 24.88 32.41

20 67.24 67.25 60.51 50.72 6.20 50.97 78.43 45.60 41.05

21 46.71 47.54 47.54 42.53 19.50 25.56 36.23 22.08 38.43

22 51.89 45.91 45.86 24.75 12.34 34.59 49.35 16.33 18.84

23 30.17 30.17 31.68 29.86 33.07 36.18 32.76 84.91 35.42

24 76.97 76.96 81.94 95.07 29.45 63.07 51.16 97.28 93.62

54

Table 4.3. The MAPE of All Methods of Train Dataset for each MIS Group

MIS SVM RF XGBoost NNETAR LSTM BRNN

0 24.97 34.13 32.60 22.53 20.35 28.54

1 26.93 32.29 36.16 28.09 19.41 26.92

2 16.91 33.03 43.78 20.26 23.51 23.39

3 27.85 32.74 47.73 20.37 30.12 28.99

4 9.87 36.93 48.88 24.79 28.90 33.38

5 28.32 39.63 51.88 21.01 12.23 27.31

6 25.77 39.30 48.53 24.18 11.90 30.64

7 51.51 54.14 57.30 33.01 23.57 36.28

8 30.35 52.84 55.29 8.53 22.49 34.31

9 46.45 37.11 57.62 19.81 25.39 29.44

10 10.27 32.35 48.07 20.69 43.23 26.51

11 34.53 34.15 45.87 22.30 37.02 27.18

12 38.33 42.49 45.33 34.31 36.60 32.97

13 36.51 47.85 58.17 8.68 27.44 26.56

14 39.48 39.47 64.06 24.57 26.72 28.18

15 32.83 33.59 63.73 29.36 28.94 25.36

16 28.20 38.35 42.60 10.66 36.20 28.33

17 17.13 43.17 49.46 30.11 34.76 26.42

18 28.16 43.88 51.64 11.46 27.54 30.14

19 27.06 40.83 53.97 8.15 34.24 32.18

20 36.02 46.38 53.49 12.54 40.06 27.14

21 29.03 34.33 49.69 21.83 22.63 31.10

22 19.95 24.84 50.49 13.27 23.70 20.31

23 18.32 26.60 56.54 24.78 22.90 19.72

24 20.77 29.04 54.41 23.00 42.95 13.10

In statistical approaches, ARIMA was the best model only in the MIS 1 and MIS 3

groups, while the ETS approach was the best in 2 groups, MIS 17 and MIS 23.

TBATS was the model that showed the best performance in the MIS 0 and MIS 19

group.

55

In machine learning algorithms, the RF is the model that shows the low error values

in 14 of 25 groups as seen from the table. Also, RF is the most effective and simplest

method to apply for this dataset. The LSTM model, a Deep Learning method, was

performed successfully in one group, MIS 16. Moreover, it was observed that the

XGBoost algorithm outperformed for the MIS 11 among all models with respect to

MAPE. SVM was the more efficient than other ML models in 2 groups out of 25

groups. BRNN was only the most successful model in one group. NNETAR was not

able to make the best-performing prediction within all MIS groups.

When the MAPE values for the test and train data sets in Table 4.2 and Table 4.3

were compared, it was observed that the applied methods MAPE of test values are

considerably higher than MAPE of train values. It shows that implemented methods

overfitted some MIS groups. Finding the appropriate model was quite challenging

as the dataset was limited to 44 months and each group had a different pattern. The

parameter values of the models were optimized so that the methods would not

overlearn the MIS groups.

Since the working environment of XGBoost and RF methods is flexible in R, the

appropriate model architecture has been established. According to the MAPE values

for test and train data sets, all machine learning methods were overfitted only in the

MIS 0 group. In order to prevent overlearning in other MIS groups, the model

parameters used for this purpose were tuned. The number of ntrees is limited in the

RF method. In the XGBoost model, on the other hand, overlearning is prevented by

decreasing the max depth, subsample, eta values, and increasing the gamma and

minchild weight parameters.

It has been determined that feed forward neural network and bayesian regularized

neural network models overlearning in some MIS groups, but the causes of

overfitting could not be investigated in detail because the brnn and nnetar functions

used in R do not allow changes in the model's layer, initial weight, and epoch

number.

56

In order to cope with overlearning in the LSTM model, different numbers of layers,

neurons, drop out values, and weight initializers have been tried. Although the model

architects were chosen quite basic due to the small dataset, overfitting was observed

in some models. To investigate the reason for this situation, the MIS 0 group, which

is overfitting in all machine learning methods, was chosen. In the applied LSTM

model, the MIS 0 group was examined by operating different weight starters. The

plots of MAPE values of train and validation datasets for each epoch with different

weight initializers are in Appendix C. In these graphs, it has been observed that there

is no overlearning when the models work with different weight initializers.

In this study, while other machine learning algorithms applied for the MIS 0 group

could not handle with overlearning, the problem was solved thanks to the flexibility

of the LSTM environment.

According to the model performances of the weight initialize methods in Table 4.4,

the most successful model was created with an initializer weight to zero. It

outperformed the others among the applied statistical and machine learning methods.

The plots of actual and predicted values according to the applied models with weight

initializers plots are in Appendix C.

Table 4.4. MAPE and RMSE Values of the LSTM Models Established with Different

Weight Initializers

 MAPE RMSE

Glorot Normal Initializer 36.68 11.03

Variance Scaling Weight Initializer 37.71 10.87

Random Normal Initializer 39.18 10.92

Random Uniform Initializer 38.50 10.94

Initializer Weight to Zero 36.60 11.09

It has been proven in this way that the LSTM model will perform well using a

different weight initializer. However, glorot uniform weight initialization was used

57

in LSTM, which was more successful in most MIS groups since the aim of this thesis

was to find the model structure that performed the best in all MIS groups on average.

According to the Table 4.1., it can be said that the Random Forest model is the most

successful on average, but this may not be a certain result since the MAPE values of

the models are very close to each other in some MIS groups. Due to this reason, we

consider a formal comparison tool to make a certain decision about the performances

of the models. Since the performance measures do not satisfy the assumptions of the

paramteric tests, a non-parametric approach is considered. It is known that the non-

parametric tests do not assume normal distributions or homogeneity of variance.

Because of this reason, it can be applied to classification accuracies, error ratios or

any other measure (Demšar, 2006). The Kruskal-Wallis test, which is a non-

parametric test, was applied for MAPE values to compare whether the performances

of the applied models were different from each other.

The hypotheses for the test are:

𝐻0: The medians of the MAPE values of the models applied are equal.

𝐻1: The medians of the MAPE values of the models applied are not equal.

Since the p-value of tests is smaller than the significance level, 0.05, the

performances of models are not equal. Moreover, Wilcoxon signed-rank test was

utilized to find which models' performances differ from each other.

𝐻0: True location shift is equal to 0.

𝐻1: True location shift is not equal to 0.

According to the result of Wilcoxon signed-rank test, there is a difference between

the median of MAPE for LSTM-BRNN and XGBoost-BRNN, since the p-values of

tests are smaller than 0.05, which is given Table 4.3. Moreover, the median MAPE

of RF is different and smaller than all other models.

58

Table 4.5. The P-Value of Wilcoxon Signed-Rank Test

 ARIMA ETS TBATS SVM RF XGBoost NNETAR LSTM BRNN

ARIMA - 0.39 0.53 0.83 0 0.41 0.8 0.39 0.2

ETS 0.39 - 0.8 0.38 0 1 0.97 0.88 0.07

TBATS 0.53 0.8 - 0.46 0 0.97 0.95 0.76 0.1

SVM 0.83 0.38 0.46 - 0 0.24 0.8 0.29 0.32

RF 0 0 0 0 - 0 0 0 0

XGBoost 0.41 1 0.97 0.24 0 - 0.55 0.83 0.03

NNETAR 0.8 0.97 0.95 0.8 0 0.55 - 0.62 0.44

LSTM 0.39 0.88 0.76 0.29 0 0.83 0.62 - 0.04

BRNN 0.2 0.07 0.1 0.32 0 0.03 0.44 0.04 -

In addition to this comparison, the MAPE values of the models are shown in Figure

4.3. According to the boxplot, the NNETAR, ETS, TBATS and LSTM have more

variations and higher error values compared to other models.

On the other hand, RF being more accurate than the other models has less variation

and lower error values. Finally, it can be observed that some models create some

big error values in their model performances.

Figure 4.3. The Average of MAPE Values of All Models

59

4.4.2 Computational Times

Since the training and parameter optimization of all MIS groups are included in a

single cell in the structure of machine learning methods, the total running times of

the models are given. The sys.time() function was utilized in R and ipython-autotime

is implemented to measure the time it takes to execute each cell in Python. The

calculated computation time for the models includes model training, validating, and

forecasting steps since the whole MIS groups are used together for the modeling

procedure.

The statistical approaches are implemented in a short time of period compared to

machine learning models since the parameter tunning process is not applied to them.

For example, the ARIMA model, predicting 15 MIS groups the best among the

statistical methods, estimated 25 groups in a total of 2.561 seconds.

The XGBoost model, which predicted all MIS groups in the longest time, took

almost 2 hours. The biggest reason for this is that the number of parameters

optimized in XGBoost is eight, compared to other models implemented in R, and the

parameter range is wider. SVM, RF and NNETAR forecast 25 MIS groups in

24.12115 minutes, 2.025247 minutes, and 19.33765 seconds respectively. Cost and

gamma parameters in the SVM model, ntree and mtry numbers in the RF model, and

the number of neurons in the function and the lambda parameter required for Box-

Cox transformation in the NNETAR model are optimized. Considering the MAPE

value, the RF model predicted 14 of 25 groups with the least error and the least

computation time. The LSTM model, which is the only method implemented in

Python, is forecasted in 4 hours 26 minutes 40 seconds. While constructing the

LSTM model, drop out value, the number of units in LSTM layers and the number

of units in dense layers, batch size, epochs, learning rate are tuned according to the

validation loss value. The BRNN approach predicted 25 groups in 40.117 seconds.

60

Table 4.6. The Computation Time for Model Training

Model Computation Time

ARIMA 2.561 secs

ETS 0.594 secs

TBATS 11.874 secs

SVM 24.12115 mins

RF 2.025247 mins

XGBoost 1 hr 42 min 47 secs

NNETAR 19.33765 secs

LSTM 4hr 26 min 40 secs

BRNN 13.76523 secs

61

CHAPTER 5

5. CONCLUSION AND FUTURE STUDIES

The chip crisis in the global automotive industry is constantly changing its

production plans. The claim rate is frequently used in the analysis of warranty data.

However, the fact that the number of production, which directly affects this rate,

cannot be predicted due to the crisis, causes uncertainty in business processes.

Studies in the literature have generally focused on the claim rate. In the thesis, many

of the related researches are introduced at the beginning and the theoretical

foundations of the methods used are discussed in detail.

In this study, a 3-month consecutive forecasting of the total number of claims was

constructed for 25 different months in services groups by using the warranty data

from the automotive industry. Nine different models were utilized: statistical

methods ARIMA, ETS, and TBATS and machine learning algorithms SVM, RF,

XGBoosting, Feed Forward Neural Network, LSTM, and BRNN.

The prediction performance of the models in the study was compared according to

the RMSE and MAPE values, and in addition, not only the prediction accuracy but

also the computation time required to predict were compared. With the non-

parametric tests applied to compare the performances of the models, it has been

observed that the most successful approach to be applied for the company is Random

Forest. When the forecast values of the applied models were shared with the

company, the forecasting of the number of claims for each MIS group positively

affected the business processes of the company. Due to the results of this study, the

warranty process can now be carried out from the number of claims instead of the

claim rate in the crisis related to production.

62

Overall, the Random Forest approach has helped to predict models with low mean

absolute percentage error. While it outperformed the other models in 14 groups in

machine learning methods, it was the second most successful model in 4 groups in

total. The number of ntree of the most successful models varies between 300 and

1300, and the number of mtry varies between 1 and 4.

Considering the trends of the groups, MIS 7-8, MIS 9 -10, MIS 17- 19, have similar

patterns over time. The remaining groups' overall claim distribution over time,

however, differs from one another. In this study, it was shown that the models that

performed well for groups with comparable patterns shared similarities.

First of all, RF has the lowest MAPE value in machine learning algorithms in MIS 7

and MIS 8 groups, while BRNN and NNETAR are the second most successful

models. Although the best parameter values used for these groups are close to each

other for BRNN and NNETAR, the ntree and mtry values used for RF are different

from each other. In statistical methods, while ARIMA(0,1,0) which is a random

walk model for MIS 7 performed better, TBATS model was the best performing

model for MIS 8, which may be due to the higher non linearity of MIS 8.

Besides that, machine learning methods, RF is the best model for MIS 9 and MIS 10,

BRNN and LSTM, respectively, are the second best models for these MIS groups.

The statistical method indicated that the least error for both groups was the

ARIMA(0,1,0) model. Finally, the statistical methods, ETS and TBATS, models

outperformed ML models for the MIS 17, MIS 19 and MIS 23 groups.

Considering the statistical methods, the ARIMA model, which is superior to other

statistical models in estimating the future values of the series, forecast 15 groups out

of 25 groups with the lowest error value. While TBATS showed the lowest error

value for 7 groups, ETS was the most successful model in 4 groups.

The change of trend and seasonality patterns within the dataset is not important for

a good model, because models with good performance also incorporate this mode of

change into the model (Hyndman et al., 2007). However, the dataset utilized in this

63

thesis is noisy and does not contain enough observations to understand the pattern of

the models. Therefore, the metric values measuring accuracy were quite high in some

groups.

ARIMA, ETS, TBATS, and NNETAR models mean absolute percentage value was

more than 50% in 2 groups out of 25 groups. The BRNN, XGBoost, and SVM

models on the other hand, have more than 50% MAPE in one group. While the

MAPE values of the RF model did not exceed 50% in any group, the error rate was

higher than 50% in 3 of 25 groups in the LSTM model. Statistical methods forecast

in MIS groups 17-19-23 with half the MAPE value of machine learning methods.

Although the Bayesian Weight Optimization technique of the LSTM model

successfully optimized the parameters, there were overlearning problems in some

MIS groups. To avoid this, the model architecture was chosen small and the range

of dropout values was kept high. The MAPE metrics of the models implemented

using various weight initializers were very different from each other. Since the study

suggested the best model, glorot uniform weight initializer was used, which helps to

create a model with the least error value. This study has shown that the use of weight

initializer, dropout values , and small architecture affects LSTM model performance

in small datasets.

The brnn and nnetar functions used in R are very limited in use as they do not allow

changing the number of layers and weights. At the same time, there is no learning

rate information in these functions, and there is no epoch information in the nnetar

function. This situation, which caused a limited study area, prevented the

investigation and prevention of overfitting in some MIS groups.

Finally, Table 4.1. and Table 4.2. show the MAPE and RMSE values for each group

of the nine models used in this study. It has been observed that the models with the

highest prediction accuracy are generally selected from the machine learning models.

Specifically, it can be said that the RF may be the best option for forecasting due to

having the overall best performance concerning error measures and requiring a short

time.

64

However, we also know that the performance of statistical and machine learning

approaches can be improved by increasing the number of observations in the MIS

groups utilized to further improve the performances obtained from this study. By

giving the parameter tuning section more contemplated in future investigations,

some convergence or training issues can be resolved.

In the modeling part, different models that have been proven as successful in time

series forecasting such as Recurrent Neural Network and Convolutional Neural

Networks can be applied. Although the univariate time series is applied, the inclusion

of many variables, such as the wear rate of the product, defective parts, production

period, precipitation, and climate used in addition to the factors affecting the number

of claims may affect the performance of the model.

Finally, the hybrid approach, where ML models and statistical approaches are

combined, may also have an impact on the performance of the model.

65

REFERENCES

Akbarov, A., & Wu, S. (2012). Warranty claim forecasting based on weighted

maximum likelihood estimation. Quality and Reliability Engineering

International, 28(6), 663–669. https://doi.org/10.1002/qre.1399.

Baccouche, M., Mamalet, F., Wolf, C., Garcia, C., & Baskurt, A. (2011). Sequential

deep learning for human action recognition. Lecture Notes in Computer

Science, 29–39. https://doi.org/10.1007/978-3-642-25446-8_4.

Beaumont, C., Makridakis, S., Wheelwright, S. C., & McGee, V. E. (1984).

Forecasting: Methods and applications. The Journal of the Operational

Research Society, 35(1), 79. https://doi.org/https://doi.org/10.2307/2581936

Bilgili, M., Arslan, N., Şekertekin, A., & Yaşar, A. (2022). Application of long short-

term memory (LSTM) neural network based on deep learning for electricity

energy consumption forecasting. Turkish Journal of Electrical Engineering

and Computer Sciences, 30(1). https://doi.org/10.3906/elk-2011-14

Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal

margin classifiers. Proceedings of the Fifth Annual Workshop on

Computational Learning Theory - COLT ’92.

https://doi.org/10.1145/130385.130401

Bouzerdoum, M., Mellit, A., & Massi Pavan, A. (2013). A hybrid model (SARIMA–

SVM) for short-term power forecasting of a small-scale grid-connected

photovoltaic plant. Solar Energy, 98, 226–235.

https://doi.org/10.1016/j.solener.2013.10.002

Box, G. E., Jenkins, G. M., & Reinsel, G. (1970). Time series analysis: Forecasting

and control Holden-day San Francisco. BoxTime Series Analysis:

Forecasting and Control Holden Day1970.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

https://doi.org/10.1023/a:1010933404324.

66

Brockett, P. L., Cooper, W. W., Golden, L. L., & Pitaktong, U. (1994). A neural

network method for obtaining an early warning of insurer insolvency. The

Journal of Risk and Insurance, 61(3), 402. https://doi.org/10.2307/253568

Brown, R. G. (1959). Statistical forecasting for inventory control. New York:

McGraw-Hill.

Brownlee, J. (2020). Data preparation for machine learning: Data cleaning, feature

selection, and data transforms in Python. Machine Learning Mastery.

Burden, F., & Winkler, D. (2008). Bayesian regularization of neural

networks. Methods in Molecular Biology (Clifton, N.J.), 458, 25–44.

https://doi.org/10.1007/978-1-60327-101-1_3

Chandriah, K. K., & Naraganahalli, R. V. (2021). RNN / LSTM with modified Adam

optimizer in deep learning approach for automobile spare parts demand

forecasting. Multimedia Tools and Applications, 80(17).

https://doi.org/10.1007/s11042-021-10913-0

Charles, W., & Chase, J. (2013). Measuring forecast performance. Demand-Driven

Forecasting: A Structured Approach to Forecasting, 103–124.

https://doi.org/10.1002/9781118691861.ch4

Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In

Proceedings of the 22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (KDD’16), 785–794.

https://doi.org/10.1145/2939672.2939785

Chughtai, F., & Zayed, T. (2008). Infrastructure condition prediction models for

sustainable sewer pipelines. Journal of Performance of Constructed

Facilities, 22(5), 333–341. https://doi.org/10.1061/(asce)0887-

3828(2008)22:5(333)

67

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3),

273–297. https://doi.org/10.1007/bf00994018

Dan Foresee, F., & Hagan, M. (1997). Gauss-Newton approximation to bayesian

learning. Proceedings of International Conference on Neural Networks

(ICNN’97), 3, 1930–1935. https://doi.org/10.1109/icnn.1997.614194

De Livera, A. M., Hyndman, R. J., & Snyder, R. D. (2011). Forecasting time series

with complex seasonal patterns using exponential smoothing. Journal of the

American Statistical Association, 106(496), 1513–1527.

https://doi.org/10.1198/jasa.2011.tm09771

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. The

Journal of Machine learning research, 7, 1-30.

Fredette, M., & Lawless, J. F. (2007). Finite-horizon prediction of recurrent events,

with application to forecasts of warranty claims. Technometrics, 49(1), 66–

80. https://doi.org/10.1198/004017006000000390

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting

machine. The Annals of Statistics, 29(5).

https://doi.org/10.1214/aos/1013203451

Geary, R. C., Wold, H., & Whittle, P. (1956). A study in the analysis of stationary

time series. The Economic Journal, 66(262), 327–330.

https://doi.org/10.2307/2227977

Géron, A. (2019). Hands-on machine learning with scikit-Learn, keras, and

tensorflow: Concepts, tools, and techniques to build intelligent systems (2nd

ed.). O’Reilly Media, Inc.

Gos, M., Krzyszczak, J., Baranowski, P., Murat, M., & Malinowska, I. (2020).

Combined TBATS and SVM model of minimum and maximum air

temperatures applied to wheat yield prediction at different locations in

Europe. Agricultural and Forest Meteorology, 281, 107827.

https://doi.org/10.1016/j.agrformet.2019.107827

68

Graves, A., & Schmidhuber, J. (2005). Framewise phoneme classification with

bidirectional LSTM and other neural network architectures. Neural

Networks, 18(5–6), 602–610. https://doi.org/10.1016/j.neunet.2005.06.042

Guelman, L. (2012). Gradient boosting trees for auto insurance loss cost modeling

and prediction. Expert Systems with Applications, 39(3), 3659–3667.

https://doi.org/10.1016/j.eswa.2011.09.058

Hardesty, L. (2017, April 14). Explained: Neural networks. MIT News |

Massachusetts Institute of Technology. https://news.mit.edu/2017/explained-

neural-networks-deep-learning-0414

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural

Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

Holt, C. C. (2004). Forecasting seasonals and trends by exponentially weighted

moving averages. International Journal of Forecasting, 20(1), 5–10.

https://doi.org/10.1016/j.ijforecast.2003.09.015

Hu, X. J., & Lawless, J. F. (1997). Pseudolikelihood estimation in a class of problems

with response-related missing covariates. Canadian Journal of Statistics,

25(2), 125–142. https://doi.org/10.2307/3315727

Hu, X. J., Lawless, J. F., & Suzuki, K. (1998). Nonparametric estimation of a lifetime

distribution when censoring times are missing. Technometrics, 40(1), 3–13.

https://doi.org/10.1080/00401706.1998.10485477

Hyndman, R. J., & Athanasopoulos, G. (2021). Forecasting: Principles and practice

(3rd ed.). Otexts.

Hyndman, R. J., & Kostenko, A. V. (2007). Minimum sample size requirements for

seasonal forecasting models. Foresight: The International Journal of Applied

Forecasting, 6, 12–15. https://ideas.repec.org/a/for/ijafaa/y2007i6p12-

15.html

69

James, G., Witten, D., & Hastie, T. (2021). An introduction to statistical learning:

with applications in R (2nd ed.). Springer. https://doi.org/10.1007/978-1-

0716-1418-1

Kalbfleisch, J. D., & Lawless, J. F. (1988). Estimation of reliability in field-

performance studies. Technometrics, 30(4), 365.

https://doi.org/10.2307/1269797

Kim, J., Hong, J., & Park, H. (2018). Prospects of deep learning for medical imaging.

Precision and Future Medicine, 2(2), 37–52.

https://doi.org/10.23838/pfm.2018.00030

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization.

https://doi.org/ https://doi.org/10.48550/arXiv.1412.6980

Krenker, A., Bešter, J., & Kos, A. (2011). Introduction to the artificial neural

networks. In (Ed.), Artificial Neural Networks - Methodological Advances

and Biomedical Applications. IntechOpen. https://doi.org/10.5772/15751

Lawless, J. F., Kalbfleisch, J. D., & Blumenthal, S. (1992). Some issues in the

collection and analysis of field reliability data. Survival Analysis: State of the

Art, 141–152. https://doi.org/10.1007/978-94-015-7983-4_9

Lawless, J. F., & Nadeau, C. (1995). Some simple robust methods for the analysis

of recurrent events. Technometrics, 37(2), 158–168.

https://doi.org/10.1080/00401706.1995.10484300

Lewis, N. D. (2016). Deep time series forecasting with python: An intuitive

introduction to deep learning for applied time series modeling. CreateSpace

Independent Publishing Platform.

Li, D., Ling, S., & Tong, H. (2012). On moving-average models with feedback.

Beroulli, 18(2). https://doi.org/10.3150/11-bej352

https://doi.org/10.48550/arXiv.1412.6980

70

Li, W., Yin, Y., Quan, X., & Zhang, H. (2019). Gene expression value prediction

based on XGBoost algorithm. Frontiers in Genetics, 10.

https://doi.org/10.3389/fgene.2019.01077

Liaw, A., & Wiener, M. (2002). Classification and regression by randomforest. R

News, 2(3), 18–22. http://CRAN.R-project.org/doc/Rnews/

Majeske, K. D. (2007). A non-homogeneous poisson process predictive model for

automobile warranty claims. Reliability Engineering & System Safety, 92(2),

243–251. https://doi.org/10.1016/j.ress.2005.12.004

Marshall, S. E., & Chukova, S. (2009). On analysing warranty data from repairable

items. Quality and Reliability Engineering International, 26(1), 43–52.

https://doi.org/10.1002/qre.1032

Mayer, H., Gomez, F., Wierstra, D., Nagy, I., Knoll, A., & Schmidhuber, J. (2006).

A system for robotic heart surgery that learns to tie knots using recurrent

neural networks. 2006 IEEE/RSJ International Conference on Intelligent

Robots and Systems, 543-548. https://doi.org/10.1109/iros.2006.282190

Murthy, D. (2004). Product warranty logistics: Issues and challenges. European

Journal of Operational Research, 156(1), 110–126.

https://doi.org/10.1016/s0377-2217(02)00912-8

Naing, W. Y. N., & Htike, Z. Z. (2015). Forecasting of monthly temperature

variations using random forests. ARPN Journal of Engineering and Applied

Sciences, 10(21), 10109–10112.

Nguyen, D., & Widrow, B. (1990). Neural networks for self-learning control

systems. IEEE Control Systems Magazine, 10(3), 18–23.

https://doi.org/10.1109/37.55119

Nielsen, M. A. (2015). Neural networks and deep learning (Vol. 25) [E-book].

Determination press. http://neuralnetworksanddeeplearning.com

https://doi.org/10.1002/qre.1032
https://doi.org/10.1109/iros.2006.282190

71

Ozdemir, O., & Yozgatlıgil, C. (2020). Performance comparison of machine

learning methods and traditional time series methods for

forecasting (Unpublished master's dissertation), Middle East Technical

University Natural and Applied Sciences, Ankara, Turkey

Ozel, T., & Davim, P. J. (2009). Intelligent Machining (1st ed.). Wiley-ISTE.

Pai, P.-F., Lin, K.-P., Lin, C.-S., & Chang, P.-T. (2010). Time series forecasting by

a seasonal support vector regression model. Expert Systems with

Applications, 37(6), 4261–4265. https://doi.org/10.1016/j.eswa.2009.11.076

Qiu, X., Zhang, L., Nagaratnam Suganthan, P., & Amaratunga, G. A. J. (2017).

Oblique random forest ensemble via least square estimation for time series

forecasting. Information Sciences, 420, 249–262.

https://doi.org/10.1016/j.ins.2017.08.060

Rai, B., & Singh, N. (2005). Forecasting warranty performance in the presence of

the ‘maturing data’ phenomenon. International Journal of Systems Science,

36(7), 381–394. https://doi.org/10.1080/00207720500139930

Ribeiro, M. H., & Coelho, L. (2020). Ensemble approach based on bagging, boosting

and stacking for short-term prediction in agribusiness time series. Applied

Soft Computing, 86, 105837. https://doi.org/10.1016/j.asoc.2019.105837

Samsudin, R., Shabri, A., & Saad, P. (2010). A comparison of time series forecasting

using support vector machine and artificial neural network model. Journal of

Applied Sciences, 10(11), 950–958. https://doi.org/10.3923/jas.2010.950.958

Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5(2),

197–227. https://doi.org/10.1007/bf00116037

Schmidhuber, J., Wierstra, D., & Gomez, F. J. (2005, July). Evolino: Hybrid

neuroevolution / optimal linear search for sequence prediction. Proceedings

of the 19th International Joint Conference on Artificial Intelligence (IJCAI),

853–858. https://doi.org/10.5555/1642293.1642430

https://doi.org/10.1016/j.eswa.2009.11.076
https://doi.org/10.1016/j.ins.2017.08.060
https://doi.org/10.1080/00207720500139930
https://doi.org/10.3923/jas.2010.950.958
https://doi.org/10.1007/bf00116037

72

Siami-Namini, S., Tavakoli, N., & Namin, A. S. (2019). The performance of LSTM

and BiLSTM in forecasting time series. 2019 IEEE International Conference

on Big Data (Big Data), 3285–3292.

https://doi.org/10.1109/bigdata47090.2019.9005997

Svetunkov, I. (2022a, August 4). Forecasting and analytics with ADAM. Forecasting

and Analytics with ADAM. https://openforecast.org/adam/

Von Oertzen, T., & Boker, S. M. (2009). Time delay embedding increases estimation

precision of models of intraindividual variability. Psychometrika, 75(1), 158–

175. https://doi.org/10.1007/s11336-009-9137-9

Wang, X., & Xie, W. (2018). Two-dimensional warranty: A literature review.

Proceedings of the Institution of Mechanical Engineers, Part O: Journal of

Risk and Reliability, 232(3), 284–307.

https://doi.org/10.1177/1748006x17742776

Winters, P. R. (1960). Forecasting sales by exponentially weighted moving averages.

Management Science, 6(3), 324–342. https://doi.org/10.1287/mnsc.6.3.324

Wu, S. (2012). Warranty data analysis: A review. Quality and reliability engineering

international, 28(8), 795–805. https://doi.org/10.1002/qre.1282

Wu, S., & Akbarov, A. (2011). Support vector regression for warranty claim

forecasting. European Journal of Operational Research, 213(1), 196–204.

https://doi.org/10.1016/j.ejor.2011.03.009

Wu, X., Zhang, C., & Du, W. (2021). An analysis on the crisis of “Chips shortage”

in automobile industry ——based on the double influence of COVID-19 and

trade friction. Journal of Physics: Conference Series. 2021 3rd International

Conference on Electronic Engineering and Informatics (EEI 2021), Dali,

China. https://doi.org/10.1088/1742-6596/1971/1/012100

Yan, S. (2017). Understanding lstm and its diagrams. Medium. Retrieved October

23, 2021, from https://blog.mlreview.com/understanding-lstm-andits-

diagrams-37e2f46f1714.

https://doi.org/10.1109/bigdata47090.2019.9005997
https://doi.org/10.1007/s11336-009-9137-9
https://doi.org/10.1177/1748006x17742776
https://doi.org/10.1287/mnsc.6.3.324
https://doi.org/10.1002/qre.1282
https://doi.org/10.1016/j.ejor.2011.03.009

73

Yang, K., & Cekecek, E. (2004). Design vulnerability analysis and design

improvement by using warranty data. Quality and Reliability Engineering

International, 20(2), 121–133. https://doi.org/10.1002/qre.617

Yu, P.-S., Yang, T.-C., Chen, S.-Y., Kuo, C.-M., & Tseng, H.-W. (2017).

Comparison of random forests and support vector machine for real-time

radar-derived rainfall forecasting. Journal of Hydrology, 552, 92–104.

https://doi.org/10.1016/j.jhydrol.2017.06.020

Yu, W., Guan, G., Li, J., Wang, Q., Xie, X., Zhang, Y., Huang, Y., Yu, X., & Cui,

C. (2021). Claim amount forecasting and pricing of automobile insurance

based on the BP neural network. Complexity, 2021, 1–17.

https://doi.org/10.1155/2021/6616121

Yule, G. U. (1926). Why do we sometimes get nonsense-correlations between time-

series? A study in sampling and the nature of time-series. Journal of the Royal

Statistical Society, 89(1), 1-64. https://doi.org/10.2307/2341482

Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural

network model. Neurocomputing, 50, 159–175.

https://doi.org/10.1016/s0925-2312(01)00702-0

Zhang, G., Patuwo, B. E., & Hu, M. Y. (1998). Forecasting with artificial neural

networks: The state of the art. International Journal of Forecasting, 14(1),

35–62. https://doi.org/https://doi.org/10.1016/S0169-2070(97)00044-7

Zhang, L., Bian, W., Qu, W., Tuo, L., & Wang, Y. (2021). Time series forecast of

sales volume based on XGBoost. Journal of Physics: Conference Series,

1873(1), 012067. https://doi.org/10.1088/1742-6596/1873/1/012067

https://doi.org/10.1002/qre.617
https://doi.org/10.1016/j.jhydrol.2017.06.020
https://doi.org/10.1155/2021/6616121
https://doi.org/10.2307/2341482
https://doi.org/10.1016/s0925-2312(01)00702-0
https://doi.org/https:/doi.org/10.1016/S0169-2070(97)00044-7
https://doi.org/10.1088/1742-6596/1873/1/012067

75

APPENDICES

A. The ACF-PACF Plot of MIS 6

Figure A.1. The ACF- PACF Plot of MIS 6

76

B. The Tuned Hyperparameters of Machine Learning Methods

Table B.1. The Tuned Hyperparameters of Machine Learning Methods for MIS 0

Model Tuned Parameters

RF ntree:400, mtry:4

SVM cost:0.00003, gamma:256

XGBoost eta:0.025, max depth:3, gamma:0.9, colsample

by tree:0, min child weight:12, subsample:0.78

NNETAR neuron:1, non-seasonal lag:1

BRNN alpha:2.14, beta:3.83, gamma:3.86, Ed:4.33,

Ew:0.9, p:4, n:37, neurons:2, epoch:19

LSTM

lstm layer(1st):5, dropout value:0.2, dense

layer(1st):3, learning rate:0.1

epoch:10

Table B.2. The Tuned Hyperparameters of Machine Learning Methods for MIS 1

Model Tuned Parameters

RF ntree:200, mtry:2

SVM cost:0.00024, gamma:128

XGBoost eta:0.02, max depth:3, gamma:0.9, colsample

by tree:0, min child weight:10, subsample:0.78

NNETAR neuron:1, non-seasonal lag:1

BRNN alpha:1.26, beta:4.49, gamma:4.64, Ed:3.61,

Ew:1.84, p:4, n:37, neurons:6, epoch:24

LSTM

lstm layer(1st):1, dropout value:0.4, dense

layer(1st):2, learning rate:0.01

epoch:14

77

Table B.3. The Tuned Hyperparameters of Machine Learning Methods for MIS 2

Model Tuned Parameters

RF ntree:400, mtry:1

SVM cost:0.00003, gamma:2048

XGBoost eta:0.025, max depth:2, gamma:0.7,

colsample by tree:0, min child weight:10,

subsample:0.84

NNETAR neuron:5, non-seasonal lag:1

BRNN alpha:1.25, beta:7.32, gamma:5.48, Ed:2.15,

Ew:2.19, p:4, n:37, neurons:8, epoch:23

LSTM

lstm layer(1st):4, dropout value:0.2, dense

layer(1st):1, learning rate:0.01

epoch:10

Table B.4. The Tuned Hyperparameters of Machine Learning Methods for MIS 3

Model Tuned Parameters

RF ntree:1100, mtry:4

SVM cost:0.00003, gamma:4096

XGBoost eta:0.025, max depth:3, gamma:0.7,

colsample by tree:0, min child weight:12,

subsample:0.84

NNETAR neuron:5, non-seasonal lag:1

BRNN alpha:1.54, beta:4.38, gamma:4.49, Ed:3.71,

Ew:1.46, p:4, n:37, neurons:10, epoch:36

LSTM

lstm layer(1st):3, dropout value:0.2, dense

layer(1st):3, learning rate:0.1

epoch:21

78

Table B.5. The Tuned Hyperparameters of Machine Learning Methods for MIS 4

Model Tuned Parameters

RF ntree:200, mtry:3

SVM cost:0.00003, gamma:512

XGBoost eta:0.025, max depth:1, gamma:0.8,

colsample by tree:0, min child weight:15,

subsample:0.92

NNETAR neuron:2, non-seasonal lag:1

BRNN alpha:2.07, beta:6.32, gamma:4.43, Ed:2.58,

Ew:1.07, p:4, n:37, neurons:2, epoch:15

LSTM

lstm layer(1st):5, dropout value:0.2, dense

layer(1st):1, learning rate:0.1

epoch:14

Table B.6. The Tuned Hyperparameters of Machine Learning Methods for MIS 5

Model Tuned Parameters

RF ntree:1300, mtry:1

SVM cost:0.00098, gamma:512

XGBoost eta:0.025, max depth:3, gamma:0.7,

colsample by tree:0, min child weight:15,

subsample:0.84

NNETAR neuron:2, non-seasonal lag:2

BRNN alpha:0.83, beta:12.17, gamma:4.97, Ed:1.32,

Ew:3, p:4, n:37, neurons:1, epoch:12

LSTM

lstm layer(1st):3, dropout value:0.2, dense

layer(1st):3, learning rate:0.01

epoch:14

79

Table B.7. The Tuned Hyperparameters of Machine Learning Methods for MIS 6

Model Tuned Parameters

RF ntree:1100, mtry:3

SVM cost:0.00098, gamma:256

XGBoost eta:0.025, max depth:3, gamma:0.7,

colsample by tree:0, min child weight:10,

subsample:0.78

NNETAR neuron:5, non-seasonal lag:1

BRNN alpha:1.11, beta:10.81, gamma:5.05, Ed:1.48,

Ew:2.28, p:4, n:37, neurons:1, epoch:16

LSTM

lstm layer(1st):2, dropout value:0.2, dense

layer(1st):4, learning rate:0.01

epoch:13

Table B.8. The Tuned Hyperparameters of Machine Learning Methods for MIS 7

Model Tuned Parameters

RF ntree:300, mtry:3

SVM cost:0.00195, gamma:32

XGBoost eta:0.02, max depth:2, gamma:0.9, colsample

by tree:0, min child weight:15,

subsample:0.78

NNETAR neuron:1, non-seasonal lag:1

BRNN alpha:1.09, beta:6.71, gamma:4.99, Ed:2.39,

Ew:2.29, p:4, n:37, neurons:1, epoch:17

LSTM

lstm layer(1st):2, dropout value:0.2, dense

layer(1st):4, learning rate:0.1

epoch:33

80

Table B.9. The Tuned Hyperparameters of Machine Learning Methods for MIS 8

Model Tuned Parameters

RF ntree:300, mtry:4

SVM cost:0.125, gamma:4

XGBoost eta:0.02, max depth:3, gamma:0.8, colsample

by tree:0, min child weight:15,

subsample:0.92

NNETAR neuron:4, non-seasonal lag:5

BRNN alpha:1.15, beta:7.58, gamma:4.94, Ed:2.12,

Ew:2.14, p:4, n:37, neurons:1, epoch:16

LSTM

lstm layer(1st):3, dropout value:0.7, dense

layer(1st):1, learning rate:0.01

epoch:43

Table B.10. The Tuned Hyperparameters of Machine Learning Methods for MIS 9

Model Tuned Parameters

RF ntree:600, mtry:3

SVM cost:0.00049, gamma:64

XGBoost eta:0.02, max depth:3, gamma:0.8, colsample

by tree:0, min child weight:15,

subsample:0.78

NNETAR neuron:2, non-seasonal lag:1

BRNN alpha:1.15, beta:8.73, gamma:4.99, Ed:1.83,

Ew:2.16, p:4, n:37, neurons:1, epoch:18

LSTM

lstm layer(1st):3, dropout value:0.4, dense

layer(1st):3, learning rate:0.01

epoch:14

81

Table B.11. The Tuned Hyperparameters of Machine Learning Methods for MIS 10

Model Tuned Parameters

RF ntree:900, mtry:2

SVM cost:0.0625, gamma:4

XGBoost eta:0.02, max depth:2, gamma:0.8, colsample

by tree:0, min child weight:12,

subsample:0.78

NNETAR neuron:2, non-seasonal lag:1

BRNN alpha:1.09, beta:6.69, gamma:4.84, Ed:2.4,

Ew:2.22, p:4, n:37, neurons:1, epoch:14

LSTM

lstm layer(1st):1, dropout value:0.6, dense

layer(1st):2, learning rate:0.1

epoch:10

Table B.12. The Tuned Hyperparameters of Machine Learning Methods for MIS 11

Model Tuned Parameters

RF ntree:1100, mtry:2

SVM cost:0.0625, gamma:1

XGBoost eta:0.02, max depth:3, gamma:0.8, colsample

by tree:0, min child weight:12,

subsample:0.78

NNETAR neuron:4, non-seasonal lag:1

BRNN alpha:1.24, beta:7.29, gamma:4.92, Ed:2.2,

Ew:1.99, p:4, n:37, neurons:1, epoch:15

LSTM

lstm layer(1st):3, dropout value:0.2, dense

layer(1st):2, learning rate:0.01

epoch:30

82

Table B.13. The Tuned Hyperparameters of Machine Learning Methods for MIS 12

Model Tuned Parameters

RF ntree:500, mtry:2

SVM cost:0.00024, gamma:512

XGBoost eta:0.02, max depth:2, gamma:0.7, colsample

by tree:0, min child weight:15,

subsample:0.92

NNETAR neuron:1, non-seasonal lag:1

BRNN alpha:1.24, beta:7.44, gamma:4.98, Ed:2.15,

Ew:2.01, p:4, n:37, neurons:1, epoch:18

LSTM

lstm layer(1st):1, dropout value:0.2, dense

layer(1st):3, learning rate:0.01

epoch:31

Table B.14. The Tuned Hyperparameters of Machine Learning Methods for MIS 13

Model Tuned Parameters

RF ntree:300, mtry:1

SVM cost:0.00003, gamma:4096

XGBoost eta:0.02, max depth:2, gamma:0.8, colsample

by tree:0, min child weight:12,

subsample:0.78

NNETAR neuron:4, non-seasonal lag:3

BRNN alpha:1.01, beta:8.71, gamma:5.11, Ed:1.83,

Ew:2.52, p:4, n:37, neurons:1, epoch:14

LSTM

lstm layer(1st):1, dropout value:0.2, dense

layer(1st):4, learning rate:0.01

epoch:14

83

Table B.15. The Tuned Hyperparameters of Machine Learning Methods for MIS 14

Model Tuned Parameters

RF ntree:1400, mtry:2

SVM cost:0.00012, gamma:1024

XGBoost eta:0.02, max depth:1, gamma:0.9, colsample

by tree:0, min child weight:15,

subsample:0.92

NNETAR neuron:2, non-seasonal lag:1

BRNN alpha:1.47, beta:8.14, gamma:4.6, Ed:1.99,

Ew:1.56, p:4, n:37, neurons:10, epoch:51

LSTM

lstm layer(1st):3, dropout value:0.4, dense

layer(1st):1, learning rate:0.01

epoch:25

Table B.16. The Tuned Hyperparameters of Machine Learning Methods for MIS 15

Model Tuned Parameters

RF ntree:500, mtry:1

SVM cost:0.0625, gamma:2

XGBoost eta:0.02, max depth:3, gamma:0.8, colsample

by tree:0, min child weight:12,

subsample:0.78

NNETAR neuron:4, non-seasonal lag:1

BRNN alpha:1.25, beta:7.75, gamma:5.04, Ed:2.06,

Ew:2.01, p:4, n:37, neurons:1, epoch:17

LSTM

lstm layer(1st):4, dropout value:0.6, dense

layer(1st):4, learning rate:0.01

epoch:19

84

Table B.17. The Tuned Hyperparameters of Machine Learning Methods for MIS 16

Model Tuned Parameters

RF ntree:600, mtry:1

SVM cost:0.00006, gamma:512

XGBoost eta:0.025, max depth:1, gamma:0.8,

colsample by tree:0, min child weight:10,

subsample:0.84

NNETAR neuron:4, non-seasonal lag:5

BRNN alpha:1.48, beta:4.68, gamma:5, Ed:3.42,

Ew:1.69, p:4, n:37, neurons:1, epoch:15

LSTM

lstm layer(1st):3, dropout value:0.2, dense

layer(1st):4, learning rate:0.01

epoch:14

Table B.18. The Tuned Hyperparameters of Machine Learning Methods for MIS 17

Model Tuned Parameters

RF ntree:400, mtry:1

SVM cost:0.00003, gamma:4096

XGBoost eta:0.025, max depth:1, gamma:0.9,

colsample by tree:0, min child weight:12,

subsample:0.78

NNETAR neuron:1, non-seasonal lag:1

BRNN alpha:0.94, beta:5.69, gamma:5.91, Ed:2.73,

Ew:3.13, p:4, n:37, neurons:10, epoch:44

LSTM

lstm layer(1st):4, dropout value:0.2, dense

layer(1st):2, learning rate:0.01

epoch:48

85

Table B.19. The Tuned Hyperparameters of Machine Learning Methods for MIS 18

Model Tuned Parameters

RF ntree:400, mtry:1

SVM cost:0.00006, gamma:8192

XGBoost eta:0.001, max depth:1, gamma:0.7,

colsample by tree:0, min child weight:15,

subsample:0.92

NNETAR neuron:3, non-seasonal lag:4

BRNN alpha:0.91, beta:5.74, gamma:5.04, Ed:2.78,

Ew:2.76, p:4, n:37, neurons:1, epoch:34

LSTM

lstm layer(1st):4, dropout value:0.2, dense

layer(1st):1, learning rate:0.01

epoch:54

Table B.20. The Tuned Hyperparameters of Machine Learning Methods for MIS 19

Model Tuned Parameters

RF ntree:1300, mtry:3

SVM cost:0.00195, gamma:64

XGBoost eta:0.001, max depth:2, gamma:0.7,

colsample by tree:0, min child weight:10,

subsample:0.78

NNETAR neuron:5, non-seasonal lag:10

BRNN alpha:0.94, beta:4.53, gamma:6.61, Ed:3.35,

Ew:3.53, p:4, n:37, neurons:5, epoch:54

LSTM

lstm layer(1st):4, dropout value:0.2, dense

layer(1st):3, learning rate:0.01

epoch:15

86

Table B.21. The Tuned Hyperparameters of Machine Learning Methods for MIS 20

Model Tuned Parameters

RF ntree:300, mtry:1

SVM cost:0.125, gamma:2

XGBoost eta:0.001, max depth:1, gamma:0.8,

colsample by tree:0, min child weight:12,

subsample:0.92

NNETAR neuron:5, non-seasonal lag:6

BRNN alpha:0.8, beta:5.01, gamma:7.98, Ed:2.9,

Ew:4.97, p:4, n:37, neurons:10, epoch:30

LSTM

lstm layer(1st):5, dropout value:0.2, dense

layer(1st):4, learning rate:0.01

epoch:13

Table B.22. The Tuned Hyperparameters of Machine Learning Methods for MIS 21

Model Tuned Parameters

RF ntree:700, mtry:1

SVM cost:0.0625, gamma:0.5

XGBoost eta:0.001, max depth:1, gamma:0.8,

colsample by tree:0, min child weight:12,

subsample:0.92

NNETAR neuron:0, non-seasonal lag:1

BRNN alpha:1.87, beta:4.86, gamma:4.33, Ed:3.36,

Ew:1.16, p:4, n:37, neurons:10, epoch:70

LSTM

lstm layer(1st):3, dropout value:0.2, dense

layer(1st):5, learning rate:0.01

epoch:99

87

Table B.23. The Tuned Hyperparameters of Machine Learning Methods for MIS 22

Model Tuned Parameters

RF ntree:200, mtry:1

SVM cost:0.0625, gamma:2

XGBoost eta:0.001, max depth:3, gamma:0.8,

colsample by tree:0, min child weight:10,

subsample:0.84

NNETAR neuron:1, non-seasonal lag:1

BRNN alpha:1.11, beta:6.64, gamma:4.99, Ed:2.41,

Ew:2.24, p:4, n:37, neurons:1, epoch:17

LSTM

lstm layer(1st):4, dropout value:0.2, dense

layer(1st):5, learning rate:0.01

epoch:21

Table B.24. The Tuned Hyperparameters of Machine Learning Methods for MIS 23

Model Tuned Parameters

RF ntree:500, mtry:1

SVM cost:0.03125, gamma:4

XGBoost eta:0.001, max depth:2, gamma:0.9,

colsample by tree:0, min child weight:10,

subsample:0.84

NNETAR neuron:1, non-seasonal lag:1

BRNN alpha:0.77, beta:8.46, gamma:9.96, Ed:1.6,

Ew:6.46, p:4, n:37, neurons:4, epoch:37

LSTM

lstm layer(1st):1, dropout value:0.2, dense

layer(1st):5, learning rate:0.01

epoch:46

88

Table B.25. The Tuned Hyperparameters of Machine Learning Methods for MIS 24

Model Tuned Parameters

RF ntree:300, mtry:1

SVM cost:0.0625, gamma:1

XGBoost eta:0.001, max depth:2, gamma:0.9,

colsample by tree:0, min child weight:12,

subsample:0.92

NNETAR neuron:2, non-seasonal lag:1

BRNN alpha:0.38, beta:25.4, gamma:21.12, Ed:0.31,

Ew:28.04, p:4, n:37, neurons:6, epoch:74

LSTM

lstm layer(1st):5, dropout value:0.2, dense

layer(1st):1, learning rate:0.01

epoch:25

89

C. LSTM Models Implemented with Weight Initialization Techniques for

MIS 0

Figure C.1. The Plot of Actual and Predicted Claims with Variance Scaling Weight

Initialization

90

Figure C.2. The Plot of MAPE Values of Train and Validation Sets with Variance

Scaling Weight Initialization

Figure C.3. The Plot of Actual and Predicted Claims with Variance Scaling Weight

Initialization on Validation Dataset

91

Figure C.4. The Plot of Actual and Predicted Claims with Random Normal Weight

Initialization

Figure C.5. The Plot of MAPE Values of Train and Validation Sets with Random

Normal Weight Initialization

92

Figure C6. The Plot of Actual and Predicted Claims with Random Normal Weight

Initialization on Validation Dataset

Figure C.7. The Plot of Actual and Predicted Claims with Random Uniform Weight

Initialization

93

Figure C.8. The Plot of MAPE Values of Train and Validation Sets with Random

Uniform Weight Initialization

Figure C.9. The Plot of Actual and Predicted Claims with Random Uniform Weight

Initialization on Validation Dataset

94

Figure C.10. The Plot of Actual and Predicted Claims with Zero Weight Initialization

Figure C.11. The Plot of MAPE Values of Train and Validation Sets with Zero

Weight Initialization

95

Figure C.12. The Plot of Actual and Predicted Claims with Zero Weight Initialization

on Validation Dataset

Figure C.13. The Plot of Actual and Predicted Claims with Glorot Normal Weight

Initialization

96

Figure C.14. The Plot of MAPE Values of Train and Validation Sets with Glorot

Normal Weight Initialization

Figure C.15. The Plot of Actual and Predicted Claims with Glorot Normal Weight

Initialization on Validation Dataset

97

Table C.1. Parameters of Models were tuned with Five Different Weight

Initialization Methods

 Tuned Parameters

Glorot Normal Initializer lstm layer(1st):2, dropout value:0.2, dense

layer(1st):3, learning rate:0.01

epoch:15

sVariance Scaling Weight

Initializer

lstm layer(1st):5, dropout value:0.2, dense

layer(1st):3, learning rate:0.01

epoch:13

Random Normal Initializer lstm layer(1st):1, dropout value:0.2, dense

layer(1st):2, learning rate:0.01

epoch:10

Random Uniform Initializer lstm layer(1st):1, dropout value:0.2, dense

layer(1st):2, learning rate:0.01

epoch:11

Initializer Weight to Zero lstm layer(1st):1, dropout value:0.2, dense

layer(1st):3, learning rate:0.01

epoch:15

