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ABSTRACT 

 

FORECASTING WARRANTY CLAIMS FOR MONTH IN SERVICES 

GROUPS IN AUTOMOTIVE SECTOR 

 

 

 

Teköz, Begüm 

Master of Science, Statistics 

Supervisor: Prof. Dr. Ceylan Yozgatlıgil 

Co-Supervisor: Prof. Dr. Tuğba Taşkaya Temizel 

 

 

August 2022, 97 pages 

 

 

Forecasting claim rate under warranty allows companies to optimize their production 

processes, reduce warranty costs and maintain customer satisfaction. In the case of a 

production crisis, the poor performance of the claim rate forecast negatively affects 

business processes. This thesis aims to improve the business processes of many 

departments, including production, research and development, quality, and after-

sales, by forecasting the number of monthly claims in each service group. In this 

study, warranty data obtained from an automotive industry is used to forecast three 

months data for twenty-five different in-service warranty performance groups using 

statistical and machine learning algorithms. Specifically, statistical approaches 

including ARIMA, TBATS and ETS models and machine learning methods 

including random forest, support vector regression, XGBoosting, feed forward 

neural network, long short-term memory neural network, and Bayesian regularized 

neural network are employed. The performance of the models is compared with the 

Wilcoxon signed-rank test, and the results show that the best performing models are 

machine learning methods and the random forest model. 
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ÖZ 

 

OTOMOTİV SEKTÖRÜNDE HİZMET GRUPLARINDA AYLIK 

GARANTİ TALEPLERİNİN TAHMİNİ 

 

 

 

Teköz, Begüm 

Yüksek Lisans, İstatistik 

Tez Yöneticisi: Prof. Dr. Ceylan Yozgatlıgil 

Co-Supervisor: Prof. Dr. Tuğba Taşkaya Temizel 

 

Ağustos 2022, 97 sayfa 

 

Garanti kapsamında talep oranını tahmin etmek, şirketlerin üretim süreçlerini 

optimize etmelerine, garanti maliyetlerini düşürmelerine ve müşteri memnuniyetini 

sürdürmelerine olanak tanır. Bir üretim krizi durumunda, hasar oranı tahmininin 

zayıf performansı iş süreçlerini olumsuz etkiler. Bu tez, her bir hizmet grubundaki 

aylık hasar sayısını tahmin ederek, üretim, araştırma ve geliştirme, kalite ve satış 

sonrası dahil olmak üzere birçok departmanın iş süreçlerini iyileştirmeyi 

amaçlamaktadır. Bu çalışmada, bir otomotiv endüstrisinden elde edilen garanti 

verileri, istatistiksel ve makine öğrenmesi algoritmaları kullanılarak yirmi beş farklı 

hizmet içi garanti performans grubu için üç aylık verileri tahmin etmek için 

kullanılmıştır. Özellikle, otoregresif bütünleşik hareketli ortalama, TBATS ve üstel 

düzleştirme modellerini içeren istatistiksel yaklaşımlar ve rastgele orman, destek 

vektör makinesi, ekstrem gradyan arttırma, ileri beslemeli sinir ağları, uzun kısa 

süreli bellek ve Bayesçi yapay sinir ağını içeren makine öğrenme yöntemleri 

kullanılmaktadır. Modellerin performansı Wilcoxon işaretli sıra testi ile 

karşılaştırılmış ve sonuçlar en iyi performans gösteren modellerin makine öğrenmesi 

yöntemleri ve rastgele orman modeli olduğunu göstermektedir. 
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Anahtar Kelimeler: Zaman Serisi Analizi, Tahmin, Makine Öğrenmesi, Garanti 
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CHAPTER 1  

1. INTRODUCTION  

Warranty is a contract indicating that the manufacturer is responsible for resolving 

this situation in case the products produced fail within the scope of the warranty. The 

contract includes both the expected performance and the compensation available to 

the buyer should a failure occur (Murthy et al., 2004). Automobile companies that 

spend a large amount of money annually to repair products that fail in line with the 

scope of the contract give priority to the analysis of warranty data (Rai et al.,2005). 

 

A typical life cycle of defective products is as follows: Manufactured products are 

stored in warehouses and products are delivered to customers through distributors. 

Some of these product’s malfunction during the warranty period and are brought to 

the service. Warranty data is data collected during the repair of defective products 

under warranty, and there is additional data that includes production, sales, and 

supply information of the defective product (Wu, 2012). 

Warranty data may contain different information depending on the industry, and each 

sector may have its own set of goals. According to the number of factors, warranty 

procedures coverage is categorized as one-dimensional or two-dimensional. One-

dimensional warranty policies only consider a single variable, such as age (Marshall 

et al., 2009), manufacturing characteristics of items (Kalbfleisch et al., 1988), and 

usage (Lawless et al., 1992, Hu et al., 1997 and Hu et al., 1998). Two-dimensional 

warranty policies typically take two factors such as age and usage amount or age and 

mileage limits. Warranty policies for high-capital products like automobiles and 

aircraft engines are typically two-dimensional, evaluating use and age together 

(Wang et al., 2018). In warranty models used in some automotive industries, the  
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coverage area is one-dimensional and only time is preferred (Yang et al., 2004). The 

aim of both one-dimensional and two-dimensional approaches is to forecast the 

claim rates by using past observations. 

The warranty claim prediction is used in both warranty procedures to provide 

manufacturers with knowledge about the product's performance and quality. Since 

time series have a wide application area, approaches have been developed in line 

with the needs. Many methods, including lifetime distributions, stochastic processes, 

time series analysis, and machine learning algorithms such as artificial neural 

networks and support vector machines, have been used to predict warranty claims in 

this way. 

Although the follow-up of the warranty process varies according to the working 

principles of the companies, the focus is on the month of the warranty of a defective 

product. The month in services (MIS) is defined as the time the vehicle was used by 

the last customer. This information shows the month of service during the warranty 

period. Products that fail in the first month of the warranty are included in the MIS 

0 service group, while the products that fail in the second month of the warranty are 

included in the MIS 1 service group. The warranty period in the automotive industry 

is generally 2 years. Accordingly, products that failed in the last month of the 

warranty are also in the MIS 24 service group. 

The focused metrics differ, as the warranty data contains different information 

depending on the industry and the priorities of each sector are different. Some 

companies prefer to use the cumulative number of repairs in the field per 1000 

products per month of service, while some companies prefer to consider the ratio of 

the number of requests in the month of service divided by the total number of 

productions during the period in which the defective product was produced. In 

addition, the ratio formed by dividing the number of requests in the service month 

by the number of products sold for the same MIS group also be applied by some 

companies. 
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When predicting the warranty data, various ratios and methods have been 

investigated in the literature, which will be discussed in the next section. Moreover, 

point estimates for the cumulative mean function of warranty claims were 

constructed by Lawless et al. (1995) based on Poisson models. Akbarov and Wu 

(2012) used the autoregressive mean model and Poisson methods to estimate the 

distribution of the claim rate, which is formed by dividing the number of claims 

received in the same service group by the number of products produced in the same 

service group.  With new requirements and techniques developed over time, the 

prediction of total claims in warranty data has also improved. Nonparametric 

techniques such as neural networks were used to predict warranty claims using 

multilayer perceptions (MLP) and radial basis functions (Rai et al., 2005) have been 

applied to predict the cumulative number of repairs carried out per 1000 vehicles. 

Moreover, forecasting the claim rate was constructed by using a support vector 

machine (Wu et al., 2011). Details of the applied methods are shared in detail in the 

second part. 

The global automotive industry is currently dealing with a chip shortage, which has 

an impact on production volume. As Wu et al. (2021) stated, the continuation of the 

chip shortage can increase the risk of breaking the industrial chain. Warranty data of 

a company in the automotive industry, whose name cannot be disclosed due to 

confidentiality, was used in this study. Due to the chip shortage, the company's 

production plan is constantly changing upon notification from suppliers. The 

company had to prefer to use different alternatives, as the use of a claim rate, which 

includes the number of sales or the number of productions, became difficult in 

business processes. Forecasting the number of claims appears to be an alternative 

based on the requirements of the organization and the applicability of the predicted 

results processes. Besides that, the business operations of the departments in the 

factory benefit from forecasting the total number of claims for each MIS group. For 

the service component, forecasting MIS groups separately aids in a more thorough 

analysis of failures' root causes. It is also used to oversee whether the malfunction 

requests accurately reflect the actions taken during the product quality development 
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phase. In addition, the amount of budget allocated by the finance department varies 

according to the MIS groups to be foreseen, considering the total number of claims.  

 

Most studies in the literature concentrate on forecasting the claim rate, but this study 

contributes to the literature by directly addressing the number of claims. With this 

contribution to the literature, it proposes methods that other companies can apply. In 

line with the needs of the company, the total number of claims for a total of 25 MIS 

groups in the service group is forecast to be 3 months consecutive. The aim of this 

thesis is to test whether the frequently used ML models and time series models can 

be used effectively in the forecasting of the number of claims. To the best of our 

knowledge, these methods have been applied for the first time for the company 

providing the warranty data, and they aim to contribute to the management of 

business processes within the company. In this study, three statistical models 

ARIMA, Exponential Smoothing, TBATS, and six different machine learning 

methods Support Vector Regression, Random Forest, XgBoost, Feed Forward 

Neural Network, Bayesian Regularized Neural Network, and Long Short-Term 

Memory Neural Network were used. By applying non-parametric statistical tests, the 

performances of the models were compared and the approach to be applied to the 

company was determined. 

The pre-processing of the data set was chosen considering the needs of the models 

and is explained in detail in Chapter 4. The prediction performance error of the 

models is compared by considering the mean absolute percentage error (MAPE) and 

root means square error (RMSE) values.  Except for the Long Short-Term Memory 

Neural Network, all other models are installed on R Studio with version 1.3.959, and 

Python with version 3.6. is used in the Long Short-Term Memory Neural Network 

model to be able to control the hyper-parameters more efficiently. 

The study is divided into five main sections. In the first section, the importance of 

warranty data analysis and forecasting the number of claims is described. The second 

part covers the research in the literature about predicting the number of claims. The 
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theoretical justification of the models used in the study and the accuracy 

measurement metrics utilized in the model performance comparison is presented in 

the third section. The data set, pre-processing techniques, applied models' 

parameters, and tuning techniques are all covered in Chapter 4. Additionally, the 

study concludes and suggestions for additional research.  
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CHAPTER 2  

2. LITERATURE REVIEW 

Warranty data is industry specific and comprise information regarding product 

quality and reliability. Forecasting the number of claims under warranty directly 

affects the company's production, supply, after-sales, and finance departments. The 

methods developed for estimating warranty claims and their performances were 

listed and explained below. 

2.1 Stochastic Process 

The Poisson process is one of the most used methods for predicting warranty claims, 

and it has been emphasized by researchers that it can be applied to a wide variety of 

environments (Veevers et al., 1986 and Lawless, 1987). Stochastic approaches have 

been preferred by most researchers, since the claim numbers are recurrent events in 

the warranty data. The number of claims is predicted using the heterogeneity and 

random effects between incoming fault requests. 

2.1.1 Non-Homogeneous Poisson Process 

The Non-Homogeneous Poisson model in the stochastic process, which estimates 

the number of failures up to time t, was used by Majeske (2007) to predict automobile 

failures and their occurrence time using the warranty dataset (Majeske, 2007). It is 

similar to an ordinary Poisson process, except for the fact that the average rate of 

arrival can change with time. The assumption behind NHPP is that the mean and 

variance of the total warranty claims over any given period are equal.  
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Automobile manufacturers tend to attempt to predict the number of claims in the 

warranty dataset without taking mileage into account. When predicting the number 

of claims, Majeske (2007) contended that using a two-dimensional perspective 

would lead to better outcomes if the total number of claims and mileage were 

assessed. When using the NHPP approach, homogeneity was assumed, implied that 

all the vehicles in the population have the same density function or failure rate 

(Majeske, 2007). It was also allowed for the inclusion of past experiences when 

describing the failure process. His study revealed that warranty claims could be 

forecasted more precisely with the NHPP. 

2.1.2 Flexible Non- Homogeneous Poisson Process 

Flexible nonhomogeneous Poisson processes were proposed by Fredette et al. (2007) 

to forecast the warranty claims with random effects being used to model any 

potential product heterogeneity. This study incorporated the finite horizon total 

prediction, which allows the prediction of the population's total number of events 

over a given period without sacrificing generality (Fredette et al., 2007). The study 

of Fredette et al. (2007) aimed to handle sizable heterogeneous populations of units, 

to use the age of product or time in the event process, and to provide accurate forecast 

intervals. In this study, the car warranty dataset from those presented by Kalbfleisch 

et al. (1991) was used. It includes 15,775 cars produced in a total of 206 days, and 

the total number of requests is 2620.  Moreover, they estimated based on the data 

accumulated in the first 150 days of production. The scenarios where heterogeneity 

was observed between processes for different units were considered. The 

independent and identically distributed random variables that could not be observed 

were added to the model as gamma distribution every 50 days. 

In the study conducted by Fredette et al. (2007), it was determined that even if the 

alpha values in the gamma distribution were not actually random, the beta 

components could be determined accordingly, and the reliability of the model could 

be ensured. In their proposed methodology, unit-level random effects were used as a 
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gamma distribution, thus unit-to-unit heterogeneity was captured, and realistic 

estimation intervals were provided (Fredette et al., 2007). 

2.1.3 Weighted Poisson Process 

Wu and Akbarov, in their 2011 study, showed that the warranty claims in recent 

months is more important in predicting future demands by using machine learning 

methods. In accordance with this study, Akbarov et al. (2012) predicted warranty 

claims and compared models with a total of six different methods including a 

weighted approach in Poisson processes. The implemented methods are 

Autoregressive Integrated Moving Average (ARIMA), Inhomogeneous Poisson 

Process (NHPP), Mixed NHPP (MNHPP) and Artificial Neural Network model, 

Weighted NHPP and Weighted MNHPP. The MHNPP model includes a useful 

technique for overcoming overdispersions in which the increments are not 

independent. ANN, on the other hand, was chosen for this study because it works 

well in time series models. Also, weighted maximum likelihood estimation was used 

for NHPP and MNHPP. 

By examining the 18-month warranty data of eight different electronics industry 

products, forecasts were conducted with six different methods according to two 

different time horizons, 3 and 6 months. The dataset includes the number of items in 

the market at time t and the number of claims at month t. The claim rate was forecast 

by dividing the number of claims at the observed time t by the number of products 

in the market. The performance of the models was compared using the normalized 

mean squared error to measure the prediction error. 

The average NRMSE value was evaluated for each utilized framework and the two 

time periods. According to the model performance results, it was found that the 

MNHPP model approach had the lowest NRMSE value. Moreover, the performance 

of the MNHPP model was superior to the NHPP model when weighted maximum 

likelihood was used. When all models were compared, it was found out that the 



 

 

10 

MNHPP approach performs better than other approaches overall. It was stated that 

the reason for this might be the selection of the weight function and parameters with 

selecting static validation data set. Through this study, Akbarov et al. (2012) 

demonstrated how adding the weighted maximum likelihood into the warranty data 

can bring the forecast result even closer to the actual value. 

2.2 Machine Learning Algorithm 

2.2.1 Multi-Layer Perceptron Neural Networks 

Rai et al. (2005) designed a new multi-layered perception neural network to analyze 

the claim ratio in the warranty data of the automotive industry. In addition to 

forecasting future MIS values, this study also involved predicting the performance 

of a given month's services warranty (MIS) in a specific future. The claim rate that 

they predicted was the total number of claims out of every 1000 units (R/1000), and 

the average claim rate for the services group increases each month by gradually 

adding the subsequent months (Rai et al., 2005).  

Although dynamic linear models and log-log plots have been used in the literature 

to predict warranty data, they argued that new methodologies are required for 

maturing data. Rai et al. (2005) proposed the multiple perception approach, arguing 

that instead of using dynamic linear models with a radial basis, a dynamic linear 

model with innovation terms would be better to consider the uncertainties introduced 

by maturing data. There were two different types of signals flowing in the MLP 

networks implemented in this study: function and error signals. The function signal 

ran from the network's entrance to its outcome, while the error signal acted in the 

opposite way. The signal factor, which affects the forecasting window and the initial 

synaptic weight values, was the first factor in the study to have an impact on the 

MLP networks forecasting. The second factor was the control factor, which includes 

the number of neurons in each layer, the learning rate, the momentum, and the 



 

 

11 

training mode. The third factor was the noise factor, which includes the design, 

manufacturing, assembly, service-related change, and biased warranty data. 

The performances of the MLP networks were compared with the performances of 

the RBF networks and log-log regression models using the normalized root mean 

square error (NRMSE) metric. Because the network's initial value assignments were 

random, two different NRMSE values were calculated using the same parameters. 

Both the test and train datasets were chosen to contain the number of neurons and 

learning rate that will have the highest signal-to-noise ratio and the lowest NRMSE 

value (Rai et al, 2005). As a result of this model, claim rates were predicted correctly, 

but when the forecast horizon exceeded eight months, it was observed that the 

prediction error values increased. 

2.2.2 Support Vector Machine 

Wu et al. (2011) claimed that models that have been implemented in the literature 

which are log-linear Poisson models, Kalman filter, time series models, and artificial 

neural network, had two weaknesses. Firstly, it was stated that predicting the rates 

calculated by arithmetic mean processing would cause a loss of information, and 

secondly, the number of claims in recent months is more important in predicting 

future requests. To overcome all these problems, the original warranty data was taken 

into account, such as claim rates, and repair rates in this study, and a more flexible 

model structure was preferred with higher weight given to the final warranty claims 

(Wu et al., 2011). In order to prove the veracity of these claims, the performances of 

numerous models were compared using two different industries’ warranty datasets 

from automobile and electronics manufacturers. They applied five different models, 

radial basis function network (RBFN), MLP, SVR, tSVR, and wSVR Java 

programming language, and some functions from two data mining packages, Weka 

and LIBSVM, were borrowed.  
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When using the RBFN, three hyper-parameters, which were the number of Gaussian 

radial basis functions, the minimum standard deviation for GRBFs, and the ridge 

value for using the outputs of GRBFs, were considered in this study.  Moreover, a 

single hidden layer using backpropagation was constructed to find the optimal 

parameters of the multilayer perception, and hyper-parameters which were learning 

rate, momentum, and the number of hidden nodes in the hidden layer were used. The 

SVR was created by optimizing the constant C, epsilon, and gamma hyper-

parameters. Eventually, gamma and epsilon were utilized as hyper-parameters in 

weighted SVR based time series (tSVR) and weighted support vector regression 

(wSVR) models. Unlike SVR, adaptive C was used instead of the constant term C in 

the wSVR and tSVR. Within the two datasets, the data were divided into the training, 

validation, and test datasets, and the hyper-parameters with the lowest MSE were 

determined from the validation dataset. The mean square error and the weighted total 

square error were applied to compare the performances of the constructed models. 

As a result of this study, Wu et al. (2011) showed that the weighted SVR-based time 

series model outperforms MLP, RBFN, and SVR in predicting the number of claims 

on warranty data from two different industries. Likewise, the weighted SVR 

regression model also generated superior outcomes to other methodologies. 

According to Wu et al. (2011), the main reason weighted methods had higher 

prediction accuracy was the fact that more weight was given to the most recent data 

rather than previous data. 
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CHAPTER 3  

3. METHODOLOGY 

In this section, forecasting methods will be introduced. Nine different methods were 

applied to determine which forecasting technique performs the best for the dataset. 

The first three of these models are well known traditional statistical methods, namely 

ARIMA, ETS and TBATS. Altough ARIMA and ETS were applied in the literature, 

TBATS was not preferred by researchers. The machine learning methods, that are 

chosen for forecasting, are the Support Vector Regression, Random Forest, 

XGBoost, Feed Forward Neural Network, Bayesian Regularized Neural Network 

and Long Short Term Memory Neural Network. 

3.1 Autoregressive Integrated Moving Average Model (ARIMA) 

Autoregressive (AR) model was introduced by Yule (1926) and Moving Average 

(MA) was introduced by Slutsky (1937).  Box et al. (1970) investigated the 

autoregressive moving average model (ARMA) based on works of Yule (1926), 

Slutsky (1937) and Wold (1938). This model is the linear combination of 𝑝 past time 

series variables and 𝑞 past white noise error terms, which can be used for a large 

class of stationary time series and predict future values for the stationary condition 

(Slutsky, 1937). The general expression of ARMA models is written as ARMA (p, 

q). The mathematical expression is given in Equation 3.1. 

𝑦�̇� − 𝜙1�̇�𝑡−1 − ⋯ − 𝜙𝑝�̇�𝑡−𝑝 = 𝜖𝑡 + 𝜃1𝜖𝑡−1 + ⋯ +  +𝜃𝑞𝜖𝑡−𝑞   

(3.1) 
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The coefficients of  𝜙 and 𝜃 which are the autoregressive and moving average 

parameters, respectively satisfy stationarity and invertibility conditions. The most 

important assumption in time series analysis is that stationarity is required to make 

statistical inference. In a stationary process, the mean, variance, and autocorrelation 

structure do not change over time. The uncorrelated random variable of 𝜖𝑡 is white 

noise, which is assumed independent and identically distributed (i.i.d) random 

variables, and it is distributed normally with zero mean and constant variance. The 

orders of autoregressive models and moving average models are p and q, 

respectively.  

The backward shift operator is called B defined by 𝐵𝑦𝑡 = 𝑦𝑡−1. The autoregressive 

part (1 − 𝜙1𝐵 − 𝜙2𝐵2 − ⋯ − 𝜙𝑝𝐵𝑃) and moving average part (1 + 𝜃1𝐵 + 𝜃2𝐵2 +

⋯ + 𝜃𝑞𝐵𝑞) are represented by 𝜙(𝐵) and 𝜃(𝐵) polynomials.  

 To be able to apply AR, MA and ARMA models mentioned above, the time series 

must maintain the assumption of stationarity. The Autoregressive Integrated Moving 

Average (ARIMA) model has been implemented for time series where the stationary 

assumption cannot be provided which is proposed by Box et al. (1970). The ARIMA 

model has three parts which are Auto Regressive (AR), Integrated (I), Moving 

Average (MA). The autoregressive part covers the lags of the differenced series, and 

it is a linear regression that relates past values of the series to the future values. The 

integrated part (I) is the number of differences to make time series stationary. 

Moving average terms cover the lag of errors and relate past forecast errors to future 

values of time series. 

 The general expression of ARIMA (p, d, q) is given as Equation 3.2. 

𝜙(𝐵)(1 − 𝐵)𝑑𝑦�̇� =  𝜃(𝐵)𝜖𝑡. 

(3.2) 

The 𝑑𝑡ℎdifference operator shows how many differences are required to make the 

series stationary. The ordinary AR and MA polynomials are represented by 𝜙(𝐵) 
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and 𝜃(𝐵), respectively. The uncorrelated random variable of ϵt is independently and 

identically distributed with a mean of zero and a constant variance of  𝜎2 which is 

generally denoted as WN (0, 𝜎2). The model parameters are generally estimated by 

maximum likelihood estimation and the model errors should be normally distributed.  

3.2 Exponential Smoothing Methods (ETS) 

Exponential Smoothing is proposed by Holt in (1957), Brown (1959), and Winters 

(1960). Exponential smoothing forecasts are weighted averages of previous 

observations, with exponentially decreasing weights over time. This methodology 

can also be used when there is seasonality and trend in the data (Hyndman et al., 

2021). Exponential smoothing can be done in a variety of ways. Some of these are 

discussed further down.  

3.2.1 Simple Exponential Smoothing 

Brown (1959) proposed SES, which covers no trend and seasonality. This model is 

commonly used for forecasting over a short period of time (Majeske et al., 1998). 

The forecast equation is given below. 

�̂�𝑡+1 = 𝛼𝑦𝑡 + (1 − 𝛼)𝑦�̂�.  

(3.3) 

A weight value  𝛼 is assigned to the most recent observation in the series 𝑦𝑡, the 

smoothed value at the previous time to forecast   𝑦𝑡+1 at time t+1. The SES is based 

on a weighted average of the previous level and the current observation, as shown in 

Equation 3.3. 
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3.2.2 Holt’s Exponential Smoothing 

Holt (1957) invented simple exponential smoothing with two parameters to estimate 

data with a trend. Holt's exponential smoothing model consists of two equations: 

trend and level. The method is intended for estimating data that includes a trend 

component.  The technique of the method is given in the following equations. 

�̂�𝑡+ℎ = 𝑙𝑡 + ℎ𝑏𝑡, 

(3.4) 

𝑙𝑡 = 𝛼𝑦𝑡 + (1 − 𝛼)(𝑙𝑡−1 + 𝑏𝑡−1), 

(3.5) 

𝑏𝑡 = 𝛽∗(𝑙𝑡 − 𝑙𝑡1
) + (1 − 𝛽∗)𝑏𝑡−1, 

(3.6) 

 

where 𝑙𝑡 represents an estimate of the series' level at time t, 𝑏𝑡 is the difference 

between level term at time t and t-1 and an estimate of the trend (slope) of the series 

at time t. The smoothing parameters are α and  𝛽∗ which are between 0 and 1. The 

forecast horizon is represented as h and the h-step forecast is provided in Equation 

3.4 (Hyndman et al., 2021). As a result, the forecast is computed by multiplying 

trend terms by the horizon and adding the level term. 

3.2.3 Holt-Winters Exponential Smoothing 

The Holt-Winters Exponential Smoothing Method is an exponential smoothing 

theory utilized by Holt (1957) and Winters (1960) for the series with trend and 

seasonality. This method contains three straightening techniques for level, trend, and 

seasonality. There are two Holt-Winters Exponential Smoothing methods which 

are Holt Winters Additive Method and Holt Winters Multiplicative Method.  



 

 

17 

If the series under the study represents additive seasonal pattern, Holt Winters 

Additive Method is used. On the other hand, Holt Winters Multiplicative Method is 

used when the series has a multiplicative seasonal pattern function (Ozdemir et al., 

2020). 

3.2.3.1 Holt-Winters Additive Method 

The Holt Winters Additive process is preferred when seasonal variations are 

reasonably stable throughout the series (Hyndman et al., 2021). The equations 

related to the model are given below.  

(�̂�𝑡+ℎ) = 𝑙𝑡 +  𝑏𝑡ℎ + 𝑠𝑡−𝑚+(𝑘+1) 

(3.7) 

where, 

Level:  𝑙𝑡 = 𝛼(𝑦𝑡 − 𝑠𝑡−𝑚) + (1 − 𝛼)(𝑙𝑡−1 + 𝑏𝑡−1)     

 (3.8) 

Trend:  𝑏𝑡 = 𝛽∗(𝑙𝑡 − 𝑙𝑡−1) + (1 − 𝛽∗)𝑏𝑡−1  

 (3.9) 

Seasonal:  𝑠𝑡 = 𝛾(𝑦𝑡 − 𝑙𝑡−1 − 𝑏𝑡−1) + (1 − 𝛾)𝑠𝑡−𝑚. 

 (3.10) 

The seasonal period is shown as m, the forecast horizon is represented as h, the 

forecast values are (�̂�𝑡+ℎ), 𝑙𝑡 represents an estimate of the series' level at time t, 𝑏𝑡 is 

the estimate of the trend of the series at time t. The seasonal component is shown as 

𝑠𝑡, an integer confirming the seasonal component is shown as k in the equation 

(Hyndman et al., 2021). The smoothed parameters are denoted by α, β, γ and these 

smoothed parameters take values between 0 and 1. 
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3.2.3.2 Holt-Winters Multiplicative Method 

The Holt Winters Multiplicative method grasps the cases where the seasonal 

variations in the data vary in proportion to the level of the series (Hyndman et al., 

2021). The equations related to the model are given below. 

(�̂�𝑡+ℎ) = (𝑙𝑡 +   ℎ𝑏𝑡)𝑠𝑡+ℎ−𝑚+(𝑘+1)
 

(3.11) 

where, 

Level:  𝑙𝑡 = 𝛼
𝑦𝑡

𝑠𝑡−𝑚
+ (1 − 𝛼)(𝑙𝑡−1 + 𝑏𝑡−1) 

(3.12) 

Trend: 𝑏𝑡 = 𝛽∗(𝑙𝑡 − 𝑙𝑡−1) + (1 − 𝛽∗)𝑏𝑡−1  

(3.13) 

Seasonal:  𝑠𝑡 = 𝛾
𝑦𝑡

(𝑙𝑡−1+𝑏𝑡−1)
+ (1 − 𝛾)𝑠𝑡−𝑚 

(3.14) 

The seasonal period is denoted by m, and the forecast horizon is denoted by h. The 

forecasted values are  �̂�𝑡+ℎ for h period,  𝑙𝑡 denotes a prediction of the series' level 

at time t, 𝑏𝑡is an estimate of the series' trend at time t, 𝑠𝑡 is a seasonal component, k 

represents an integer that confirms the seasonal component (Hyndman et al., 2021). 

The smoothing parameters are between 0 and 1, which are 𝛼, 𝛽∗ and 𝛾. All these 

parameters are incremented until the smallest MSE value is reached. All exponential 

smoothing models require initial values for level, trend, and seasonal components.  
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3.3 Trigonometric Seasonal Models (TBATS) 

The ultimate goal of Trigonometric seasonality, Box-Cox transformation, ARMA 

errors, Trend and Seasonal components (TBATS) is to use the multiple techniques 

to forecast time series data with complex seasonal patterns (De Livera et al., 2011). 

The TBATS was developed by De Livera et al. (2011) using a combination of Box-

Cox transform, ARMA errors and trigonometric seasonal patterns to handle complex 

seasonal patterns (Gos et al., 2020). The methodology used in TBATS modeling is 

represented. 

𝑦𝑡
(𝜔)

= {
𝑦𝜔

𝑡 − 1

𝜔
           𝜔 ≠ 0,

𝑙𝑜𝑔𝑦𝑡            𝜔 = 0,
                  

(3.15) 

𝑦𝑡
(𝜔)

= 𝑙𝑡−1 + ∅𝑏𝑡−1 + ∑ 𝑠𝑡−𝑚𝑖

(𝑖)
+ 𝑑𝑡

𝑇

𝑖=1

 

(3.16) 

where 𝜔 is Box-Cox parameter, the original series 𝑦𝑡 is transformed using the Box-

Cox transformation in the first equation. The transformed series  𝑦𝑡
(𝜔)

can be 

extended by following equations. 

𝑙𝑡 = 𝑙𝑡−1 + ∅𝑏𝑡−1 + 𝛼𝑑𝑡, 

(3.17) 

𝑏𝑡 = (1 − ∅)𝑏 + ∅𝑏𝑡−1 + 𝛽𝑑𝑡, 

(3.18) 

𝑠𝑡
(𝑖)

= 𝑠𝑡−𝑚𝑖

(𝑖)
+𝛾𝑖𝑑𝑡, 

(3.19) 
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𝑑𝑡 = ∑ ∅𝑖𝑑𝑡−𝑖
𝑝
𝑖=1 + ∑ 𝜃𝑖𝜖𝑡−𝑖 + 𝜖𝑡

𝑞
𝑖=1 , 

(3.20) 

where 𝑙𝑡 is the local level in period t, b and 𝑏𝑡 are the long-run and short-run trends, 

and the trend damping parameter is shown as  ∅ and the smoothing parameters in the 

concept of BATS are α, β and 𝛾𝑖  for i= 1, …, T. In addition, 𝑑𝑡 follows an ARMA 

(p, q) process and 𝜖𝑡 is a Gaussian white noise process with mean equal to 0 and 

constant variance equal to 𝜎2 (De Livera et al., 2011). The seasonally trigonometric 

component is depicted by the following equations. 

𝑠𝑡
(𝑖)

= ∑ 𝑠𝑗,𝑡
(𝑖)𝑘𝑖

𝑗=! ,  

(3.21) 

𝑠𝑗,𝑡
(𝑖)

= 𝑠𝑗,𝑡−1
(𝑖)

𝑐𝑜𝑠𝜆𝑗
(𝑖)

+ 𝑠𝑗,𝑡−1
∗(𝑖)

𝑠𝑖𝑛𝜆𝑗
(𝑖)

+ 𝛾1
(𝑖)

𝑑𝑡, 

(3.22) 

𝑠𝑗,𝑡
∗(𝑖)

= −𝑠𝑗,𝑡−1𝑠𝑖𝑛𝜆𝑗
(𝑖)

+ 𝑠𝑗,𝑡−1
∗(𝑖)

𝑐𝑜𝑠𝜆𝑗
(𝑖)

+ 𝛾2
(𝑖)

𝑑𝑡, 

(3.23) 

𝜆𝑗
(𝑖)

=
2𝜋𝑗

𝑚𝑖
. 

(3.24) 

The above equations show a Fourier series-based trigonometric representation of 

seasonal components and 𝛾1
(𝑖)

, 𝛾2
(𝑖)

 and 𝜆𝑗
(𝑖)

= 2𝜋𝑗/𝑚𝑖 are the smoothing parameters. 

The stochastic level of 𝑖𝑡ℎ seasonal component is defined by 𝑠𝑗,𝑡
(𝑖)

 and the stochastic 

growth required to describe seasonal variations in the seasonal component is defined 

by 𝑠𝑗,𝑡
∗(𝑖)

. 
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3.4 Support Vector Machine 

Support vector (SV) machines are supervised learning models that examine data for 

classification and regression analysis which comes with associated learning 

algorithms. Boser et al. (1992) developed the SV machine in its current form at 

AT&T Bell Laboratories. 

The following concept has been conceptually executed by the machine: The input 

vectors are non-linearly mapped to a feature space with a high dimension. As a result, 

Cortes et al. (1995) constructed a linear decision surface in feature space.  SVM 

attempts to find a hyperplane to correctly divide a given training set and maximize 

the greatest distance on both sides of the data input between the closest illustrations 

to the hyperplane. Although SVM's working logic appears to be better suited to 

solving classification problems, the SVM algorithm which was converted to 

regression problems is also very powerful for solving the time series problems. The 

technique of SVR is based on the structured risk minimization principle and aims to 

minimize an upper bound of the generalization (Pai et al., 2010).  

In the given a set of data (𝑥𝑖, 𝐴𝑖)𝑖=1
𝑁 , where  𝑥𝑖 is the input vector, 𝐴𝑖 is the actual 

vector and N is the total number of data patterns. The general expression of the 

regression function is as follows: 

 
𝐺 = 𝑤𝜙(𝑥𝑖) + 𝑏 

(3.25) 

The property of the inputs is denoted by  𝜙(𝑥𝑖), and the coefficients are weights and 

bias. The coefficients 𝑤𝑖 and b are obtained by minimizing the regularized risk 

function given in Equation 3.26. 

𝑃(𝐺) = 𝐶
1

𝑁
∑ 𝐿Ɛ(𝐴𝑖 , 𝐺𝑖) +

1

2
‖𝑤‖2

𝑁

𝑖=1

 



 

 

22 

(3.26) 

where, 

𝐿Ɛ(𝐴𝑖,𝐺𝑖) = {
0, 𝑖𝑓 |𝐴𝑖 − 𝐺𝑖| ≤ Ɛ

|𝐴𝑖 − 𝐺𝑖| − Ɛ, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(3.27) 

The penalty function and the error term in the equation are the cost, C and Ɛ 

parameters, respectively. For each training observation, the penalty function applies 

a penalty, if the error terms are larger than ± ε via insensitive loss function (Ozdemir 

et al., 2020). The error term illustrates the difference between actual values and 

values calculated by the regression function.  

Minimizing the cost functions can be solved by the Lagrange theory. In the Lagrange 

theory, the multipliers of Lagrange satisfy the equality 𝛽𝑖 ∗ 𝛽𝑖
∗ = 0. These multipliers 

are determined by the regression hyperplane's optimal weight vector which is 

represented below. 

𝑊∗ = ∑ (𝛽𝑖 − 𝛽𝑖
∗)𝐾(𝑥, 𝑥𝑖)𝑁

𝑖=1 . 

(3.28) 

In the nonlinear problem, the regression function is obtained for the unknown data 

point below. 

𝐺(𝑥, 𝛽, 𝛽∗) = ∑ (𝛽𝑖 − 𝛽𝑖
∗)𝐾(𝑥, 𝑥𝑖)𝑁

𝑖=1 + 𝑏, 

(3.29) 

where  𝐾(𝑥𝑖 , 𝑥𝑗) is a kernel function, whose value equals the inner product of two 

vectors which are 𝑥𝑗 , 𝑥𝑖, Φ given in the Equation 3.26, transforms the input vectors 

𝑥𝑗 , 𝑥𝑖 into a high dimensional space.  Kernel function is introduced to be able to 

create non-linear hyperplanes and separate complex structures in the series. There 
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are several Kernel functions which are Gaussian Kernel Radial Basis Function 

(RBF), Linear, Sigmoid and Polynomial, which affect the accuracy of SVR 

(Bouzerdoum et al., 2013). 

3.5 Random Forest 

Breiman (2001) proposed the Random Forest, which is a gathering of regression 

trees, each identified in a bootstrap sample of the raw data. It relies on an ensemble 

learning method for classification and regression and works by constructing multiple 

decision trees without replacement at training time. Random Forest has been used 

for various purposes such as weather forecasting, solar radiation forecasting, and 

biostatistics (Naing et al., 2015).  

Random forest consists of two principles: bagging and random subspace method 

(RSM), which is executed for each node of the classification and regression tree 

(CART) (Breiman, 2001). Not only the training data, but also the input variables are 

arbitrarily chosen when constructing each decision tree classifier or decision tree 

regressor (Géron, 2019). The procedure of Random Forest is as follows: X denotes 

the training dataset of dimension N x n, where N denotes the number of observations, 

and n is the number of input features, the random subset with n’ is initially created 

using replacement sampling technique which is bootstrapping to generate individual 

decisions (Yu et al., 2017).  

The target values of the training dataset with dimension N x 1 are represented by Y, 

and the number of trees in the model is represented by L. Each decision tree in the 

RF is denoted by  𝑇𝑖, where  𝑖 = 1, … , 𝐿. The number of features chosen at random 

in each node of the decision tree is p features out of m (Qiu et al., 2017). The value 

of p can be selected as √𝑚 (James et al., 2021) for the classification problem and 

m/3 (Liaw et al., 2002) for the regression problem.  



 

 

24 

Firstly, in the RF algorithm, the training set is created by sampling B times from all 

observations, with 𝑇𝑖 replacement for each decision tree. To calculate the best split 

criterion for 𝑇𝑖, m randomly selected features are used in each node of one decision 

tree and this step repeated until the decision tree is large enough.  

The average of each tree's forecasts applied to the original data yields the final 

forecast. In a regression problem, the mean or median of the outputs is calculated, 

while in a classification problem, the majority rule is applied (Naing et al., 2015). 

For classification problem: 𝑓(𝑥)= majority vote (𝑇𝑏(𝑥))1
𝐵 

(3.30) 

For regression problem: 𝑓(𝑥) =
1

𝐵
∑ 𝑇𝑏(𝑥)𝐵

𝑏=1 . 

(3.31) 

3.6 Extreme Gradient Boosting (XGBoost) 

The boosting algorithm is an ensemble learning algorithm proposed by Schapire 

(1990). The aim of the boosting algorithm is to construct a strong classifier from 

weak classifiers in the series by using the decision trees iteratively, so it is dealing 

with the bias-variance trade-off which has an ability to minimize the variance of the 

predicted parameter between samples by increasing the predicted parameter's 

deviation. 

The boosting method has been used to develop many algorithms. The Gradient 

Boosting algorithm, which is among the developed methods, was also suggested by 

Friedman (2001). Gradient Boosting is a machine learning algorithm that combines 

Gradient Descent and Boosting. Gradient Boost comprises three major components: 

an additive model, a loss function, and a weak learner (Guelman, 2012). In order to 

optimize the cost function, the algorithm iteratively chooses a function (weak 

hypothesis) that points in the negative gradient direction and this process is iterated 

https://www.mygreatlearning.com/blog/bias-variance-trade-off-in-machine-learning/
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until convergence has been obtained and the last decision has been made (Ribeiro et 

al., 2020). In the Gradient Boost method, prediction is obtained by averaging the 

regression estimates. In classification estimation, the majority rule is used for 

classification tasks. 

XGBoost, which was proposed by Chen et al. (2016) is an implemented gradient 

boosting decision tree-based algorithm that can build boosted trees quickly and in a 

linear way (Li et al., 2019). XGBoost supports both Classification and Regression 

Trees (CART) and linear classifiers as base classifiers. The loss function is expanded 

by XGBoost using a second-order Taylor expansion (Li et al., 2019). The XGBoost 

model can be shown as a formula. 

𝑦�̂� ≔  ∑ 𝑓𝑘(𝑥𝑖),       𝑓𝑘𝜖 𝐹

𝐾

𝑘=1

 

(3.32) 

where K is the number of trees and F represents all regression trees, 𝑓𝑘 illustrates one 

regression tree, the predicted value is shown as 𝑦�̂�. 

The objective function is given below. 

𝑂𝑏𝑗(𝑡) = ∑ 𝑙(𝑦𝑖, 𝑦�̂�
(𝑡)

) + ∑ Ω(𝑓𝑡) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑡

𝑖=1

𝑛

𝑖=1

 

(3.33) 

where l is loss function which enables to measure the difference between prediction 

𝑦�̂� and real value 𝑦𝑖. Ω is the regularization term, which defines the complexity of 

the model, and it is used for avoiding the over fitting. It is calculated as follows. 

Ω(𝑓) = 𝛾𝑇 +
1

2
𝜆‖𝑤‖2 



 

 

26 

(3.34) 

where, T is the number of leaf nodes and w is the score represented by the leaf nodes. 

The aim of training minimizes loss of an objective function. The loss function is 

enlarged utilizing Taylor expansion in XGBoost. The final objective function is 

represented below. 

𝑂𝑏𝑗(𝑡) ≅ ∑ [𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)] + Ω(𝑓𝑡)

𝑛

𝑖=1

 

(3.35) 

= ∑ [𝑔𝑖𝑤𝑞(𝑥𝑖) +
1

2
ℎ𝑖𝑤𝑞(𝑥𝑖)

2 ] + 𝛾𝑇 + 𝜆
1

2

𝑛

𝑖=1

∑ 𝑤𝑗
2

𝑇

𝑗=!

 

(3.36) 

= ∑[( ∑ 𝑔𝑖)𝑤𝑗 +
1

2
(∑ ℎ𝑖 + 𝜆)𝑤𝑗

2] + 𝛾𝑇
𝑖𝜖𝐼𝑗𝑖 𝜖 𝐼𝑗 

𝑇

𝐽=1

 

(3.37) 

𝑔𝑖 = ∂
𝑦(𝑡−1)̂ 𝑙 (𝑦𝑖 , 𝑦𝑖

(𝑡−1)̂
) ,  ℎ𝑖 = ∂

𝑦(𝑡−1)̂
2 𝑙 (𝑦𝑖 , 𝑦𝑖

(𝑡−1)̂
). 

(3.38) 

The first-order derivative and second-order derivative of each data point in the error 

function, respectively, are 𝑔𝑖 and ℎ𝑖. 𝐼𝑗 the index set of samples on each leaf node j 

(Yu et al., 2021).  

The formula of calculating the optimal value is as follows below. 

𝐿(𝑡)̃(𝑞) = −
1

2
∑

(∑ 𝑔𝑖𝑖∈𝐼𝑅
)

2

∑ ℎ𝑖𝑖∈𝐼𝑅
+λ

𝑇
𝑗=1 −

(∑ 𝑔𝑖𝑖∈𝐼 )2

∑ ℎ𝑖𝑖∈𝐼 +λ
−  γ . 
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(3.39) 

3.7 Artificial Neural Network 

Artificial neural networks (ANNs), also known as neural networks (NNs) are data 

processing systems associated with biological neural networks derived from natural 

brains (Hardesty, 2017). In terms of design, the connectivity of many autonomous 

individual processing elements in the neural network model works in a similar way 

to the interconnections of individual cells in the brain in some ways (Brockett et al., 

1994). An artificial neural network (ANN) is made up of artificial neurons, which 

are a collection of connected units or nodes that resemble the neurons in a biological 

brain. ANNs imitate the way our brains work and predict or classify the features. 

In the A part of Figure 3.1, the chemical inputs from the dendrites are converted into 

electrical signals by the nucleus. Through the axon terminals, the signal passes on to 

the next neurons. Edges are the terms for the connections (Kim et al., 2018). The 

weight of neurons and edges is typically adjusted as learning progresses. The signal 

strength at a connection can be changed by the weight.  

The weights, biases, and activation functions transform the input values in a node 

and the perception's output values are passed onto the next activation functions in 

part B.  

In the C part, the general structure of the ANN is given, it consists of three parts: 

input layer, hidden layers, and output layers. Data is introduced to the network 

through the input layer and the information in the data is processed in the hidden 

state. Eventually, the output layer represents the measured value based on the inputs 

(Samsudin et al., 2010). 
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Figure 3.1. The Structure of Neural Network (Kim et al., 2018) 

 

 

First, ANNs have shown that, unlike traditional model-based methods, it does 

not have any prior assumptions of the model form required in the model building 

process. Second, ANNs can be widely applied in various situations. It also performs 

by extrapolating previous behavior patterns instances to forecast future nonlinear 

models and a predefined nonlinear model. Third, nonlinear methods have been used 

to create ANNs. It has been revealed that a network can perform nonlinear modeling 

without having to approximate any continuous function to any prior knowledge 

about feature relationships (Zhang et al., 1998). 

 

 

Figure 3.2. The General Concept of Artificial Neural Network (Chughtai et al., 2008) 
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As illustrated in Figure 3.2, the working structure of ANN consists of three steps: 

multiplication, summation, and activation. A unit gets inputs which are multiplied 

by the weights and the weighted inputs are gathered together in the second step. Next, 

to adjust the threshold of the transfer function called as an activation function, a bias 

term is added. The activation function converts the sum of the weighted inputs and 

bias into the outcome in the final step. The status of the neuron within the network 

identifies the type of activation function (Zhang et al., 1998). The model equation is 

given below. 

𝑦𝑡 = 𝑤0 + ∑ 𝑤𝑗 . 𝑔

𝑞

𝑗=1

  (𝑤0𝑗 + ∑ 𝑤𝑖𝑗 . 𝑦𝑡−𝑖

𝑝

𝑖=1

) + 𝜖𝑡 

(3.40) 

where i = 0, 1, 2, ..., p; j = 1, 2, ..., q; 𝑦𝑡 is the output, 𝑦𝑡−1, ..., 𝑦𝑡−𝑝, are inputs,  𝛼𝑗 

and 𝛽𝑖𝑗 are model parameters that are connection weights; the number of input nodes 

is called p and q is the number of hidden nodes and the hidden layer is represented 

as g. The activation function will identify the empirical formula of the ANN and the 

network's non-linearity. There are several types of activation functions which are 

non-linear such as logistic or sigmoid Equation 3.42 and hyperbolic functions. Also, 

other activation functions which are linear, and quadratic can also be used for the 

different modeling applications. The sigmoid function converts the values into a 

range of 0 to 1. 

𝑠𝑖𝑔(𝑥) =
1

1+exp (−𝑥)
. 

(3.41) 

Dynamic and static ANNs are the two major categories of ANNs. The ANN is 

referred to as a static network if the output signals are generated directly from the 

given input. It is said to be dynamic when the network's output is the input of ongoing 

and prospective neurons (Lewis, 2016). 
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The learning process is a critical component of the model’s success which is called 

‘back propagation’. In this algorithm, the weights are updated and have been 

initialized either randomly or certain techniques such as Gradient Descent 

Algorithm. It enables minimizing by the help of the loss/errors of training any NN 

(Nielsen, 2015). 

3.7.1 Feed-Forward Neural Network 

The static neural network described in the previous section is the neural network 

where outputs are generated by the inputs without feedback. A feed forward neural 

network (FNN) which is a static neural network, is a type of neural network in which 

the nodes' contacts do not form a cycle (Ozdemir et al., 2020). 

The single layer feed forward neural network and the multi-layer feed neural network 

are the two parts of this neural network. The single layer feed forward neural network 

has two layers which are input and output layers. The multi-layer feed forward neural 

networks have three layers which are input layer, hidden layer and output layer. 

Figure 3.3 demonstrates the network design of a multi- layer feed forward neural 

network. The working mechanism in both models is forward: data continues to flow 

from the input nodes to the output nodes, passing through any hidden nodes. Single 

hidden layer feed forward neural networks are the most widely used model for time 

series and forecasting compared to multi-layer feed forward neural networks. It can 

be applied to forecast one step ahead values (Zhang, 2003).  



 

 

31 

 

Figure 3.3. The Structure of Feed Forward Neural Network (Ozel et al.,2009) 

3.7.2 Long Short-Term Memory  

A typical feed-forward neural network may not be a good option for time series 

forecasting since it assumes the independence of both train and test data, and it needs 

fixed length input and output. Recurrent Neural Network arises as a solution for this 

problem by using feedback connection to account for earlier states in addition to the 

current input before producing the final output. In this process, a duplicate of the 

previous values for the layer containing the recurrent nodes is saved, and they are 

then used as an additional input for the following phase. This allows the network to 

display dynamic temporal behavior for a given time sequence. However, this 

structure suffers from long term dependency because the gradients approach to zero 

during the training.  This problem is called the vanishing gradient problem.  

The long short-term memory (LSTM), a variation of Recurrent Neural Network, is a 

solution to this gradient problem explained above. LSTM has feedback connections, 

so it can learn long-term dependencies, which is effective in sequence prediction and 

classification and has a structure of simple repeated secrets. 

LSTM was established by Hochreiter and Schmidhuber in 1997 to overcome the 

issue of optimum gradients and non-convergence in RNN (Hochreiter et al.,1997). 

LSTM expertise in many fields such as robot control (Mayer et al., 2006), time series 
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prediction (Schmidhuber et al., 2005), speech recognition (Graves et al., 2005), 

human action recognition (Baccouche et al.,2011).  

A classic LSTM network consists of cells, which are memory blocks. In an LSTM 

cell there are forget, input and output gates. The memorization process can be 

controlled by LSTM's gating mechanism. Gates that open and close provide for the 

storage, writing, and reading of data in LSTMs. The forget gate determines whether 

to remove existing data and the input gate determines how much new data will be 

added to the memory. Finally, the output gate determines whether the cell's present 

value relates to the output (Siami-Namini et al., 2019).  

The Feed Forward neural network has two assumptions which independence with 

train and test dataset and transformation to vector. Because of this reason, time series 

forecasting by using a feed forward neural network is not an appropriate approach. 

Recurrent Neural Network which is appropriate for time series analysis can handle 

the sequential dataset since its architecture of uses the previous layers and feeds the 

signals both forward and backward. Inputs with forward and backward feed the 

model by using RNN.  Therefore, the working mechanism of NN models is like AR 

models (Krenker et al., 2011). In general, in LSTM, it performs well in time series 

data as the behavior of historical data is kept in memory (Bilgili et al., 2022). 

A hidden vector, h, and a memory vector, m, are maintained in an LSTM, and they 

control state updates and outputs at each time step, respectively. The structure of 

LSTM is shown in Figure 3.4. 
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Figure 3.4. The Structure of the Long Short-Term Memory (LSTM) Neural 

Network (Yan, 2017) 

 

 

In the forget gate, the sigmoid function is used to determine what information is 

required based on the values of ℎ𝑡−1 and 𝑥𝑡. The output of this gate is 𝑓𝑡 and is a 

value between 0 and 1. Output 0 means getting rid of the learned value completely, 

if 1 holds values. 

This result is calculated as follows: 

𝑓𝑡 = 𝜎(𝑊𝑓ℎ[ℎ𝑡−1], 𝑊𝑓𝑥[𝑥𝑡], 𝑏𝑓) 

(3.42) 

where  𝑏𝑓  is called the bias value, 𝑊𝑓ℎ is the weight of the previous hidden state and 

𝑊𝑓𝑥 is the weight of the input. In the input gate, there are two different layers which 
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are sigmoid and tanh layer.  The sigmoid layer determines which values will be 

updated and tanh layer generates a new value which will be stored in the memory 

(Siami-Namini et al., 2019). These layers can be calculated as follows. 

𝑖𝑡 = 𝜎(𝑊𝑖ℎ
[ℎ𝑡−1], 𝑊𝑖𝑥

[𝑥𝑡], 𝑏𝑖), 

(3.43) 

𝑐𝑡 = tanh(𝑊𝑐ℎ
[ℎ𝑡−1], 𝑊𝑐𝑥

[𝑥𝑡], 𝑏𝑐). 

(3.44) 

In the output gate, the sigmoid layer is used to understand which information in the 

memory contributes to the output. The values between -1 and 1 are then mapped 

using a non-linear tanh function, and finally is multiplied by both (Siami-Namini et 

al., 2019). The equation of the final step is given below. 

𝑜𝑡 = 𝜎(𝑊𝑜ℎ
[ℎ𝑡−1], 𝑊𝑜𝑥

[𝑥𝑡], 𝑏𝑜). 

(3.45) 

ℎ𝑡 = 𝑜𝑡 ∗ tanh (𝑐𝑡). 

(3.46) 

3.7.3 Bayesian Regularized Neural Network 

While optimizing Artificial Neural Network models, it is attempted to reduce error 

values by changing the weights. However, this method can sometimes lead to 

overtraining or overfitting issues (Guelman, 2012). To reduce overfitting, the 

Bayesian regularization method was developed for nonlinear systems (Burden et al., 

2008). 
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The sum of squared error is between the model output and the target value. In the 

training part, it is expected to have a low SSE because of this reason Bayesian 

regularization term is added to this equation (Guelman, 2012). 

𝐹 = 𝛽𝐸𝐷 + 𝛼𝐸𝑊 

(3.47) 

where F denotes the objective function, the sum of squared errors is shown as 𝐸𝐷, 

the sum of squares of the network weights is illustrated as 𝐸𝑊. The objective 

parameters are α and β. 

The weights of networks whose density function is written in Bayes rule are 

contemplated as random variables, the weights of networks are considered (Dan 

Foresee et al., 1997). The probability density function of the weight of networks is 

calculated with given data as follows. 

𝑓(𝑤|𝐷, 𝛼, 𝛽, 𝑀) =
𝑓(𝐷|𝑤, 𝛽, 𝑀)𝑓(𝑤|𝛼, 𝑀)

𝑓(𝐷|𝛼, 𝛽, 𝑀)
 

(3.48) 

where D denotes the observed data and M is a particular neural network.  The prior 

density is P(w|α, M), which covers the knowledge of the weights. The likelihood 

function is P (D| w, β, M), which is the probability of the data occurring given the 

weights. P (D| α, β, M) is a normalization factor (Burden et al., 2008). Assuming that 

the noise in the data is normal, the density function was determined for the weights. 

In this condition, given the parameters w, the probability of the data is given by 

below. 

𝑓(𝐷|𝑤, 𝛽, 𝑀) =
exp (−𝛽𝐸𝐷)

𝑍𝐷(𝛽)
 

(3.49) 
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where 𝑍𝐷(𝛽) = (
2𝜋

𝛽
)𝑁/2, 𝛽 = 1/𝜎2 .The density of prior can be shown as; 

𝑓(𝑤|𝛼, 𝑀) =
exp (−𝛼𝐸𝑊)

𝑍𝑊(𝛼)
 

(3.50) 

where 𝑍𝑤(𝛼) = ∫ exp (−𝛼𝐸𝑊). The last two equations are combined with 

probability density function of the network weights. The optimal weights can 

maximize the posterior probability by using the following equation. 

𝑓(𝑤|𝐷, 𝛼, 𝛽, 𝑀) =
exp (−(𝛽𝐸𝐷 + 𝛼𝐸𝑊))

𝑍𝑊(𝛼)𝑍𝐷(𝛽)
 

(3.51) 

where 𝑍𝑊(𝛼) = ∫ exp(−𝐹) 𝑑𝑤. The optimal weights which maximize the posterior 

probability are obtained by Nguyen and Widrow algorithm, which starts with initial 

weights and optimizes them via Gauss-Newton Algorithm (Nguyen et al., 1990). 

3.8 Forecast Accuracy Measures 

Forecast performance measures how well applied models can predict future values. 

It is discovered by contrasting which model approach yields superior outcomes 

because of performance metrics. The literature contains various types of 

performance metrics. This study considered computation time, mean absolute 

percentage error, and root mean square error. 

3.8.1 Root Mean Square Error 

While the RMSE measures the distance between two observed and predicted values, 

it also measures the magnitude of the √(1/h) error by using the Euclidean distance 

factor. In time series analysis, the root mean squared errors are the most chosen 
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performance metric (RMSE). The forecasting method has high accuracy if the RMSE 

performance value is low. The expression of RMSE is given below. 

𝑅𝑀𝑆𝐸 =  √
1

ℎ
∑(𝑦𝑡 −  �̂�𝑡)2

ℎ

𝑖=1

 

  (3.52) 

where h is the number of forecasted points, 𝑦𝑡 is the actual value and the �̂�𝑡 is the 

forecast value.  

3.8.2 Mean Absolute Percentage Error 

The advantage of the Mean Absolute Percentage Error (MAPE) is that it minimizes 

the impact of positive and negative errors on one another, making it easier to 

compare the forecast performance of various models. It is a widely used performance 

metric for forecasting models and measuring the accuracy of time series; it 

determines the absolute percentage error for each period (Charles et al., 2013). 

The MAPE is represented by the equation below. 

𝑀𝐴𝑃𝐸 =
1

ℎ
∑ |

𝑦𝑡 −  �̂�𝑡

𝑦𝑡
|

ℎ

𝑡=1

 

(3.53) 

where h is the number of forecast points, 𝑦𝑡 is the actual value, and the �̂�𝑡 is the 

forecast value. The forecast technique has high accuracy if the MAPE value is low, 

same with RMSE performance. 

3.8.3 Computational Time 

Computational time is also considered along with forecast accuracy measures. 

Utilizing R's sys.time() function, the working time of the techniques mentioned for 
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each group is calculated in seconds. LSTM algorithm, Python is used and ipython-

autotime is implemented to measure the time it takes to execute each cell. 
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CHAPTER 4  

4. ANALYSIS 

In this chapter, the forecasting of the number of claims according to the month in 

service groups (MIS) is performed using the warranty data of a company in the 

automotive industry with the techniques described in Chapter 3. The properties of 

the data set, the forecasted groups used in the study, and the implemented data 

preprocessing techniques will be explained to present the specific details of the 

analysis process. The 3-month numerical results for each model will be demonstrated 

with visual and numerical examples and the accuracy of selected models for each 

group will be assessed.  

4.1 Dataset 

The warranty data, which is formed by keeping the records of the malfunction 

requests received under the warranty, illustrates the product quality and directly 

affects many departments in the enterprise. In this study, the warranty dataset from 

an automotive manufacturer covers three variables, which are the period of use of 

the defective products by the customer (MIS), the total number of claims and the 

time. The warranty contract of the product covers 2 years, so there is a total of 

twenty-five months in service groups within the warranty period. The dataset 

contains 44 monthly total number of claims for each MIS group from November 

2021 to June 2022. There are a total of 1100 observations in the dataset, and these 

observations cover the 44-month total error number of 25 different MIS groups. 
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If the product breaks down within a month of the warranty period beginning, it is in 

MIS 0 group. If the product works fine in the first month but breaks down within the 

second month of the warranty period, it is in MIS1 group, and so on. In other words, 

for the MIS 0 group, the total number of claims from November 2021 to June 2022 

is included, and the other MIS groups include the total number of failures in the same 

time periods. For each MIS group, 3-month periods are forecast. 

4.2 Data Preprocessing 

Preprocessing aids in converting original data into a format suitable for modeling. 

Data preparation, particularly in machine learning, enables the model to incorporate 

the unidentified structure underlying the issue (Brownlee, 2020).  

There are many data preprocessing techniques in the literature. These techniques can 

be shaped according to the needs or assumptions of the models. Many preprocessing 

techniques, such as Box-Cox transformation, power transformation, detrends, and 

deseasonalization, help ensure the assumptions of some statistical time series 

modeling methods, whereas some machine learning models can only be used with 

standardized data. The preprocessing processes applied in this study were designed 

according to the requirements of the models used. Moreover, all preprocessing 

processes were performed for each MIS group themselves, and these techniques are 

explained in detail below. 

• Original Data: There has been no preprocessing applied to this data 

set. The original dataset was used for the ARIMA model because the 

required preprocessing for the ARIMA model such as differencing 

for stationarity is already applied by the auto.arima function. 

 

• Box-Cox Transformation: The Box-Cox transformation technique 

was applied with the BoxCox function to assess the stationarity in 

variance (Hyndman et al., 2021). The machine learning algorithms 
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utilized in this study can also deal with non-stationary variance. In the 

traditional time series method, the tbats and auto.arima function 

implement the Box-Cox transformation internally. Moreover, the 

Box-Cox transformation was applied manually for the ETS model. 

The nnetar function contains the lambda parameter which is used for 

Box-Cox transformation.   

 

• Min-Max Scaling: In this study, scaling was applied before applying 

LSTM, XGBoost, RF and SVM. In addition, the Bayesian 

Regularized Neural Network and Feed-Forward Neural Network 

functions implemented in R in this study, apply scaling within 

themselves. The formula for Min-Max scaling is given below. 

𝑦𝑚𝑎𝑥   and  𝑦𝑚𝑖𝑛  are the minimum and maximum values respectively, 

𝑦𝑡 is the actual value at time t and 𝑦𝑡
′ is the observations scaled value 

at time t. 

 

𝑦𝑡
′ =

𝑦𝑡−𝑦𝑚𝑖𝑛

𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛
. 

(3.54) 

• Time Delay Embedding: Machine learning methods cannot account 

for the time series' autocorrelation property the way statistical 

methods can. Time delay embedding, also known as sliding window, 

is a technique for converting a time series into a matrix of time-

dependent datasets (Von Oertzen et al., 2009). By converting a long 

data series into short time-dependent segments, time dependency is 

brought to the forefront and the problem is solved. The average 

number of lags was established as 5 in the ACF-PACF graphs within 

each MIS group. The ACF-PACF graph can be found in Figure A.1. 

Except Feed-Forward Neural Network, since the nnetar function 
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covers the finding best past lags itself. In this study, the lag number 

in embedding matrices has been integrated into the models in 

Random Forest, SVM, XgBoost, BRNN, LSTM techniques 

accordingly. 

 

• Splitting Datasets: For both statistical methods and machine 

learning methods in each MIS group, the last 3 of 44 observations 

were reserved as test data and the remaining data as training data. In 

the implementation of all machine learning models, the last 20% of 

the training data was used as validation data to tune the parameters of 

models. The diagram of splitting dataset is given below. Then, the 

tuned parameters were implemented onto all training data, including 

validation, to forecast 3 months ahead in the test dataset. The 

validation set remains static for each group. 

 

Figure 4.1. The Diagram of Splitting Dataset 

4.3 Model Implementation 

All models except the LSTM model were installed via R. The dataset was converted 

into a nested format according to the MIS groups in the model application part in R. 

In the LSTM model implemented using Python, each MIS group is converted to list 
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format. Data pre-processing, data splitting, model construction, and parameter tuning 

were constructed separately for each MIS group. 

It is a challenge to provide a numerical explanation of the estimated parameter, 

tuning parameter, total number of neurons and hidden layers of each model, as nine 

models are implemented for each 25 groups separetely. Instead, the model 

implementation section will go over the specifics and operation of statistical and 

machine learning techniques on this data. 

4.3.1 Statistical Models 

In the statistical forecasting parts, ARIMA, ETS, and TBATS models were used to 

forecast 3 months ahead of 25 different MIS groups. The assumptions of the models 

were checked, and the features of the functions used were considered. 

4.3.1.1 ARIMA 

As it is explained in the methodology chapter, the forecast is made after the trend is 

eliminated. To predict future periods, the autoregressive model (AR) first determines 

how many lagged series are necessary for addition to the parameter p. The series is 

intended to become stationary by using the difference(I) as the d parameter in the 

second section. The equation is then completed by the addition of the moving 

average model (MA), the q parameter, and the number of lags forecasts errors. The 

model is constructed using the original dataset because the ARIMA function 

incorporates a Box-Cox transformation within itself by using lambda="auto" 

argument in the auto.arima function. While the model is being constructed, the 

appropriate AR and MA components are the ones that minimize the Corrected 

Akaike Information Criterion (AICc), which is the default criteria in the auto.arima 

function. The expression of AICc is given below. 

𝐴𝐼𝐶𝑐 =
2𝑘𝑛

𝑛 − 𝑘 − 1
− 2 ln( �̂�). 
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(3.55) 

The series length, the number of parameters to be predicted, and the maximum value 

of the likelihood function using the observed data, are indicated by n, k, and �̂� 

correspondingly. The auto.arima function used selects the best model that minimizes 

the chosen information criterion and estimates the parameters of the model using 

Maximum Likelihood Estimation. Hence, the normality assumption is crucial. 

4.3.1.2 ETS 

In this study, the ets function in R has been used to establish the ETS model. The 

ETS model can distinguish between addition and multiplication as the model's type 

using a function that utilizes exponential smoothing methods. The best model is 

selected using the ets function relies on the AIC, AICc, and BIC criteria minimizing. 

The normality assumption was confirmed before the model was constructed, and 

Box-Cox transformation was used for non-normal series (Svetunkov, 2022). 

4.3.1.3 TBATS 

TBATS model is a technique that includes trigonometric seasonality, Box-Cox 

transformation, ARMA errors, trend, and seasonal components. The best model is 

selected according to the lowest AIC value. This model is implemented via R with 

the tbats function.  

4.3.2 Machine Learning Models 

In the machine learning forecasting part, Support Vector Machine, Random Forest, 

Bayesian Regularized Neural Network, Feed Forward Neural Network, XgBoost, 

and LSTM models were utilized to forecast 3 months ahead of 25 different MIS 

groups. The lag number was set to 5 in the time embedding matrix for all machine 

learning techniques. As previously stated, since many MIS groups are predicted, the 
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models cannot be expressed numerically. Instead, the principles of their general 

application will be explained. 

4.3.2.1 Support Vector Machine 

The SVM model setup utilized the train function from the caret package. SVM 

kernel parameter was assessed to constitute radial basis function and the method was 

chosen as svmRadial for all MIS groups. Moreover, two hyperparameters in this 

function can be tuned, which are the cost parameter, which can be defined as the 

penalty term in SVM, and the gamma parameter, which controls the effect distance. 

The optimal parameters of the model are obtained each series separately by using the 

train function in the caret package. 

4.3.2.2 Random Forest 

Random Forest model was established by using randomForest function in R. The 

parameters utilized in the function are mrty and ntree. Since the time lag number is 

5, the mtry value is taken from 1 to 4, and the ntree value is determined from 200 to 

2100. The parameters that provide the minimum MAPE and RMSE value for each 

MIS group are provided by the tuneRF function and defined as the best parameter. 

4.3.2.3 XgBoost 

The caret package's train function's "xgbTree" method was used to implement the 

XGBoost model. Model tuning parameters assist to find the best model on its own 

via the train function. Tuning has been done on the Caret package's boosting iteration 

(nrounds), max tree depth (max depth), shrinkage term (eta), minimum loss reduction 

(gamma), subsample ratio of columns (colsample by tree), and subsample percentage 

(subsample) parameters. 
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The ranges determined for these parameters are defined by the expand.grid function. 

The eta helps to avoid overfitting problem and its range is from 0 to 1. In this study, 

it is chosen on (0.02, 0.025, 0.001) interval. The gamma parameter indicates the 

minimal loss reduction necessary to split. Three numbers were generated with the 

gamma parameter being uniform from 0 to 4. In this study, boosting iterations, which 

is nround, from 100 to 800 were selected by 100 increments. Subsample ratio of 

columns parameter supplies to select subsample when constructing the tree. The 

range of colsample_bytree is 0, 0.1, and 0.2. Although the maximum depth of the 

tree is default 6, and it is used (1, 2, 3) interval in this study. The minimum child 

weight is that minimum sum of instance weight (hessian) needed in a child. The 

values of minimum child weight are between 10 and 15. Subsample indicates the 

percentage of each tree's observations that are drawn at random. In this study, three 

values are applied in the range which is uniformly distributed from 0.7 to 1. 

All specified parameter ranges have been tuned separately for each group, and the 

caret function has been used to determine the optimum parameters, and models have 

been developed. 

4.3.2.4 Feed-Forward Neural Network 

The Feed-Forward Neural Network model was constructed by using nnetar function 

in R for each MIS group. A feed-forward neural network with one hidden layer 

performs the function. The function itself calculates weights in the hidden layer. 

However, the learning rate and epoch number information are not available for the 

nnetar function. The parameters that can be tuned for this function are the number 

of neurons and Box-Cox transformation. Neuron hyperparameter is tuned over Box-

Cox applied dataset. The number of neurons was taken from 1 to 5 and the number 

of neurons providing the lowest RMSE value was selected for each MIS group. 

Moreover, the number of lags is calculated within the function and the network is 

trained for the given data utilizing back propagation, with all prior lags initiated as 

inputs. 
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4.3.2.5 LSTM 

The Long Short Term Memory method, in contrast to other models, was constructed 

by using keras package in Python because it needs careful hyperparameter tuning 

which is very limited in R. The time embedding was applied on each group, just like 

in previous machine learning models, along with normalization and min-max scaling 

procedures for each MIS group.  

Input data sequence parameters are time step window and model batch size are 5 and 

4 respectively. The time step window was used to create sequence length. In the 

hyperparameter search parameters are tune epoch, max trials, which are 100 and 25 

respectively. The target of the adjustment algorithm was determined as objective 

val_loss, early stopping patience 10, learning rate reduce patience 2, learning rate 

reduce factor 0.5. 

In this study, many various layers, number of neurons, drop out and layer weight 

initialization methods were applied. It was challenging to determine the ideal 

architecture because each MIS group in the dataset had a limited observation and a 

unique structure. In this study, the minimum error value in the experimentally 

applied model parameters was reached in the model structure specified below. 

The model was constructed using one LSTM layer. The hp.int() function, which 

enables us to specify the space search of hyperparameters, was used to select the 

optimal number of units within the layer. The relu activation function is used and the 

number of cells is defined from 1 to 5 with a step of 1. Return sequence should also 

be set to True since it allows another LSTM to use the output.  

A drop layer was added after the layers were constructed to prevent the neural 

network from over-learning. Neurons are randomly concealed in the dropout layer 

based on the dropout rate. The hp.choice() function is used in this study to select 

between 0.2, 0.4, 0.6 and 0.7 as the ideal dropout value. The range of drop out values 

has been kept wide to prevent overlearning and underlearning while modeling 25 

different MIS groups at the same time. The lstm layer was concatenated to one fully 
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connected layer. It is choosen an optimal value between 1-5 with a step of 1 and the 

activation function is selected as relu. The learning rate is set as 0.01 or 0.1 with the 

hp.choice() function. In the selected MIS groups, seven different weight initiation 

methods from the layer weight initiator methods were applied. These are random 

normal, random uniform, glorot normal, glorot uniform, variance scaling, zero-

weight initialized methods. 

Glorot uniform initializer, also called Xavier uniform initializer, was used to set the 

initial random weights of Keras layers, which outperformed most groups in the 

applied methods. After adding the model to the last fully connected layer, the model 

should be compiled. Three parameters are used for this step, loss, optimizer, and 

metric. The term loss refers to the metric that will be used to indicate the model's 

error in the training stage, which is chosen as mse in this study. The model is 

evaluated using a metric called mape which resembles loss but is not utilized during 

training. 

The Adam optimization technique was proposed by Kingma et al. in 2014. This 

method is based on adaptive estimations of lower-order moments and is used to 

optimize stochastic objective functions with first-order gradients. They claimed that 

their optimizer is computationally effective, ideal for issues with little memory 

needs, lots of data, and/or many parameters, as well as suitable for the non-stationary 

and noisy slope issues we encountered in our study (Kingma et al., 2014). 

Adam optimizer was proposed in the car spare part demand forecast made in 2021 

(Chandriah et al., 2021). It has been stated that it is difficult to predict since the 

demand for automobile spare parts is constantly repeated. In this study, Adam 

optimizer was used because the number of warranty claims has a non-stationary and 

complex structure for each month in service group. 

After compiling the model with the existing trial hyperparameters, it is defined keras 

tuner object and the learning rate schedule and early stopping were determined. 
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The EarlyStopping function was implemented with three parameters: monitor, 

patience, and mode, in Keras to help stop training when the model is no longer 

developed. The monitor shows what the model will be stopped early by considered, 

and the mode includes how the metric value we consider in the monitor should be 

(min or max). Patience is the number of epochs without improvement after which 

training will be early stopped. In this study, the monitor is defined val_loss, which 

is the value of cost function. Patience is adjusted to stop early if training does not 

improve within 10 epochs and mode is defined as minimum. 

ReduceLROnPlateau which allows to reduce the learning rate when a particular 

metric stop improving was used as the learning rate schedule. The three parameters 

are implemented for the early stop function are also included in this function. In 

addition, the factor parameter, which helps to reduce the learning rate, was added as 

0.5 and the min_lr parameter was utilized as the lowest learning rate as 0.02 in the 

study.  

The dashboard of Weights&Biases is applied to illustrate loss, validation loss, 

accuracy, validation accuracy and all metrics are recorded by using 

WandbCallback() for each 25 MIS groups and  all trial models are saved.  

The optimal hyperparameter value for the dataset and models of all groups was 

derived via Bayesian optimization. 

For each of the 25 groups, the optimal hyperparameter values were identified, and 

then 3-horizon prediction and inverse transformation were performed out on these 

values. 

4.3.2.6 Bayesian Regularized Neural Network 

The Bayesian regularization for the feed-forward neural networks model with the 

brrn function is configured separately for each of the 25 groups. Two-layer neural 

networks can accommodate the function. The number of neurons is the only variable 

in the package that can be altered. The model was constructed using the lowest 
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RMSE value for each group to determine the number of neurons, which ranged from 

1 to 10. The number of epochs, 𝛼, 𝛽, 𝐸𝑑, and 𝐸𝑤 are tuned within the function. The 

inputs and outputs are scaled within the function. The Gauss-Newton algorithm is 

used to optimize the weights, which are given a normal distribution as the prior 

distribution. The 25 different models are trained by using back propagation. 

4.4 Empirical Analysis 

4.4.1 Comparison of Modelling Performances 

The performances of the nine models applied for each MIS group are evaluated in 

this section, according to the RMSE and MAPE metrics. The structure of the models 

and the methods used to prevent the models from overlearning are discussed. Also, 

optimized parameter values while applying the models are given in Appendix B. 

The forecasting performances of the implemented models in all MIS groups were 

compared by applying non-parametric statistical tests for the MAPE metric and 

considering the computational time of models. In this way, the company can easily 

decide and implement the best model for the forecasting of the number of claims in 

the warranty processes. 

All months in services groups are, on average, non-stationary. The series in Figure 

4.2 were selected depending on MIS groups with different patterns, as has been seen 

above, the groups are not, on average, stationary.  

At certain points in time, the total number of claims for each group decreased 

significantly. The most important reason is that the removal of many product series 

from production and the commissioning of different series with new engines. This 

change, which was applied from the production, was also reflected in the failure 

request in the warranty data. This steep decline in MIS groups and the short time 

interval in the data adversely affected the performance of the models. 
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Figure 4.2. The Time Series Plots of MIS 0, MIS 10, MIS 16 and MIS 24 

 

 

In the first figure, the MIS 0 group exhibited a significant drop in the first half of 

2019, whereas the MIS 10 group declined after the first half of 2019. Although the 

MIS 16 group had ups and downs from 2019 to the end of 2020, there was a decline 

after the first half of 2020. Lastly, the number of claims in the MIS 24 showed a 

considerable increment in the last quarter of 2020, then represented a sharp decrease 

in 2021 and 2022.  

It is also observed from the graph that the steep decline in MIS 24 is observed later 

than MIS 0. This is because it takes time for MIS groups to reflect the actions taken 

during the production phase. While its reflection to MIS 0 can be seen right away, 

its reflection to MIS 24 requires longer time. The impact of groups on each other is 

excluded because the product's month of use is assessed when determining product 

quality. 

Table 4.1. and Table 4.2. present the RMSE and MAPE values for test data of both 

statistical and machine learning methods applied to the 25 months in services group, 
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respectively. The MAPE values for the train data of the machine learning methods 

applied to 25 months, respectively, in the services group are in Table 4.3.  

Table 4.1. The MAPE of All Methods of Test Dataset for each MIS Group 

MIS ARIMA ETS TBATS SVM RF XGBoost NNETAR LSTM BRNN 

0 40.51 37.08 36.50 47.65 43.39 50.33 41.17 44.25 54.79 

1 18.80 26.63 26.66 23.67 30.96 24.13 42.01 33.59 23.49 

2 65.87 33.84 33.17 34.22 17.68 28.24 63.75 38.82 21.73 

3 10.31 11.40 11.55 20.04 16.51 45.09 15.35 23.78 21.32 

4 4.76 15.25 13.33 29.32 3.27 44.75 10.23 53.70 28.90 

5 28.62 33.85 28.24 28.23 3.75 49.37 20.46 60.52 23.30 

6 31.58 46.77 46.99 29.98 9.59 31.77 13.63 45.92 29.85 

7 21.74 29.24 28.47 43.46 9.95 38.09 26.72 46.83 21.42 

8 13.08 15.25 10.51 16.62 3.98 39.04 13.49 40.76 21.20 

9 21.84 36.16 35.78 42.10 5.84 31.38 43.57 32.85 16.72 

10 41.89 79.09 78.45 33.77 9.59 28.05 40.76 16.79 30.16 

11 31.45 36.78 36.62 22.90 29.30 20.90 22.64 28.07 24.49 

12 16.80 18.91 21.38 15.14 26.41 33.62 16.89 28.20 16.97 

13 29.86 45.59 55.47 14.81 15.42 18.81 20.79 20.61 24.64 

14 21.80 14.67 14.68 9.41 8.87 21.54 15.30 21.75 13.99 

15 76.98 32.81 32.75 29.79 24.84 37.41 22.10 21.65 27.53 

16 26.14 35.95 35.95 24.04 23.56 34.15 34.84 30.27 23.45 

17 25.88 8.98 9.29 70.76 14.79 32.38 30.74 34.10 24.82 

18 44.54 22.22 21.59 28.17 18.89 24.89 54.69 22.46 28.79 

19 10.92 10.58 8.35 19.20 11.89 18.87 41.00 12.82 17.05 

20 36.35 57.27 48.67 27.00 2.53 27.45 42.11 23.69 21.90 

21 27.77 43.30 43.30 26.89 12.88 16.42 18.79 14.97 26.74 

22 30.64 38.00 37.93 15.57 6.87 17.67 28.90 9.40 9.75 

23 21.25 17.00 17.37 17.69 21.60 20.78 22.96 58.47 23.56 

24 27.37 38.83 38.35 24.17 10.25 23.30 15.37 30.32 25.20 
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Table 4.2. The RMSE of All Methods of Test Dataset for each MIS Group 

MIS ARIMA ETS TBATS SVM RF XGBoost NNETAR LSTM BRNN 

0 12.03 11.13 10.88 11.25 11.68 10.99 11.58 12.07 11.57 

1 46.66 54.36 54.63 58.51 50.28 66.79 68.10 79.97 57.28 

2 114.53 96.88 94.31 65.02 32.44 62.31 110.95 76.22 41.20 

3 35.04 38.04 37.34 54.33 38.69 111.30 42.46 63.84 65.12 

4 14.76 33.67 30.19 72.95 9.25 110.57 26.58 132.38 74.72 

5 78.33 66.48 58.11 74.62 9.75 128.81 63.57 157.32 63.11 

6 80.53 79.90 80.13 87.49 23.99 81.44 42.82 112.97 87.00 

7 52.84 52.84 51.96 95.63 21.48 84.63 64.58 100.39 47.50 

8 30.10 30.11 22.56 38.10 9.31 85.33 34.70 88.59 47.40 

9 47.62 56.60 56.18 88.85 14.55 66.92 90.58 70.65 42.73 

10 85.69 87.94 87.57 81.60 20.49 61.29 83.26 39.14 56.41 

11 82.49 65.63 65.43 64.68 48.07 53.87 66.20 50.65 70.29 

12 49.94 40.87 42.57 43.42 39.47 65.31 47.57 52.80 51.85 

13 53.13 53.12 59.32 30.22 28.68 32.15 39.91 35.92 50.29 

14 34.24 28.84 28.85 14.47 15.23 33.88 28.46 34.50 26.37 

15 103.16 79.47 79.30 42.42 37.23 55.02 66.94 39.82 39.61 

16 69.66 62.41 62.40 66.00 56.93 80.33 87.39 62.44 63.82 

17 53.29 21.75 20.89 130.08 26.94 61.79 62.94 63.31 52.51 

18 86.70 39.09 38.12 66.52 35.82 57.13 99.17 43.09 59.11 

19 18.23 18.23 19.55 40.15 19.99 38.14 76.07 24.88 32.41 

20 67.24 67.25 60.51 50.72 6.20 50.97 78.43 45.60 41.05 

21 46.71 47.54 47.54 42.53 19.50 25.56 36.23 22.08 38.43 

22 51.89 45.91 45.86 24.75 12.34 34.59 49.35 16.33 18.84 

23 30.17 30.17 31.68 29.86 33.07 36.18 32.76 84.91 35.42 

24 76.97 76.96 81.94 95.07 29.45 63.07 51.16 97.28 93.62 
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Table 4.3. The MAPE of All Methods of Train Dataset for each MIS Group 

MIS SVM RF XGBoost NNETAR LSTM BRNN 

0 24.97 34.13 32.60 22.53 20.35 28.54 

1 26.93 32.29 36.16 28.09 19.41 26.92 

2 16.91 33.03 43.78 20.26 23.51 23.39 

3 27.85 32.74 47.73 20.37 30.12 28.99 

4 9.87 36.93 48.88 24.79 28.90 33.38 

5 28.32 39.63 51.88 21.01 12.23 27.31 

6 25.77 39.30 48.53 24.18 11.90 30.64 

7 51.51 54.14 57.30 33.01 23.57 36.28 

8 30.35 52.84 55.29 8.53 22.49 34.31 

9 46.45 37.11 57.62 19.81 25.39 29.44 

10 10.27 32.35 48.07 20.69 43.23 26.51 

11 34.53 34.15 45.87 22.30 37.02 27.18 

12 38.33 42.49 45.33 34.31 36.60 32.97 

13 36.51 47.85 58.17 8.68 27.44 26.56 

14 39.48 39.47 64.06 24.57 26.72 28.18 

15 32.83 33.59 63.73 29.36 28.94 25.36 

16 28.20 38.35 42.60 10.66 36.20 28.33 

17 17.13 43.17 49.46 30.11 34.76 26.42 

18 28.16 43.88 51.64 11.46 27.54 30.14 

19 27.06 40.83 53.97 8.15 34.24 32.18 

20 36.02 46.38 53.49 12.54 40.06 27.14 

21 29.03 34.33 49.69 21.83 22.63 31.10 

22 19.95 24.84 50.49 13.27 23.70 20.31 

23 18.32 26.60 56.54 24.78 22.90 19.72 

24 20.77 29.04 54.41 23.00 42.95 13.10 

 

In statistical approaches, ARIMA was the best model only in the MIS 1 and MIS 3 

groups, while the ETS approach was the best in 2 groups, MIS 17 and MIS 23. 

TBATS was the model that showed the best performance in the MIS 0 and MIS 19 

group.  
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In machine learning algorithms, the RF is the model that shows the low error values 

in 14 of 25 groups as seen from the table. Also, RF is the most effective and simplest 

method to apply for this dataset. The LSTM model, a Deep Learning method, was 

performed successfully in one group, MIS 16. Moreover, it was observed that the 

XGBoost algorithm outperformed for the MIS 11 among all models with respect to 

MAPE. SVM was the more efficient than other ML models in 2 groups out of 25 

groups. BRNN was only the most successful model in one group. NNETAR was not 

able to make the best-performing prediction within all MIS groups. 

When the MAPE values for the test and train data sets in Table 4.2 and Table 4.3 

were compared, it was observed that the applied methods MAPE of test values are 

considerably higher than MAPE of train values. It shows that implemented methods 

overfitted some MIS groups. Finding the appropriate model was quite challenging 

as the dataset was limited to 44 months and each group had a different pattern. The 

parameter values of the models were optimized so that the methods would not 

overlearn the MIS groups.  

Since the working environment of XGBoost and RF methods is flexible in R, the 

appropriate model architecture has been established. According to the MAPE values 

for test and train data sets, all machine learning methods were overfitted only in the 

MIS 0 group. In order to prevent overlearning in other MIS groups, the model 

parameters used for this purpose were tuned. The number of ntrees is limited in the 

RF method. In the XGBoost model, on the other hand, overlearning is prevented by 

decreasing the max depth, subsample, eta values, and increasing the gamma and 

minchild weight parameters. 

It has been determined that feed forward neural network and bayesian regularized 

neural network models overlearning in some MIS groups, but the causes of 

overfitting could not be investigated in detail because the brnn and nnetar functions 

used in R do not allow changes in the model's layer, initial weight, and epoch 

number. 
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In order to cope with overlearning in the LSTM model, different numbers of layers, 

neurons, drop out values, and weight initializers have been tried. Although the model 

architects were chosen quite basic due to the small dataset, overfitting was observed 

in some models. To investigate the reason for this situation, the MIS 0 group, which 

is overfitting in all machine learning methods, was chosen. In the applied LSTM 

model, the MIS 0 group was examined by operating different weight starters. The 

plots of MAPE values of train and validation datasets for each epoch with different 

weight initializers are in Appendix C. In these graphs, it has been observed that there 

is no overlearning when the models work with different weight initializers. 

In this study, while other machine learning algorithms applied for the MIS 0 group 

could not handle with overlearning, the problem was solved thanks to the flexibility 

of the LSTM environment. 

According to the model performances of the weight initialize methods in Table 4.4, 

the most successful model was created with an initializer weight to zero. It 

outperformed the others among the applied statistical and machine learning methods. 

The plots of actual and predicted values according to the applied models with weight 

initializers plots are in Appendix C. 

Table 4.4. MAPE and RMSE Values of the LSTM Models Established with Different 

Weight Initializers 

 MAPE RMSE 

Glorot Normal Initializer 36.68 11.03 

Variance Scaling Weight Initializer 37.71 10.87 

Random Normal Initializer 39.18 10.92 

Random Uniform Initializer 38.50 10.94 

Initializer Weight to Zero 36.60 11.09 

 

It has been proven in this way that the LSTM model will perform well using a 

different weight initializer. However, glorot uniform weight initialization was used 
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in LSTM, which was more successful in most MIS groups since the aim of this thesis 

was to find the model structure that performed the best in all MIS groups on average. 

According to the Table 4.1., it can be said that the Random Forest model is the most 

successful on average, but this may not be a certain result since the MAPE values of 

the models are very close to each other in some MIS groups. Due to this reason, we 

consider a formal comparison tool to make a certain decision about the performances 

of the models. Since the performance measures do not satisfy the assumptions of the 

paramteric tests, a non-parametric approach is considered. It is known that the non-

parametric tests do not assume normal distributions or homogeneity of variance. 

Because of this reason, it can be applied to classification accuracies, error ratios or 

any other measure (Demšar, 2006). The Kruskal-Wallis test, which is a non-

parametric test, was applied for MAPE values to compare whether the performances 

of the applied models were different from each other.  

The hypotheses for the test are: 

𝐻0: The medians of the MAPE values of the models applied are equal. 

𝐻1: The medians of the MAPE values of the models applied are not equal. 

Since the p-value of tests is smaller than the significance level, 0.05, the 

performances of models are not equal. Moreover, Wilcoxon signed-rank test was 

utilized to find which models' performances differ from each other.  

𝐻0: True location shift is equal to 0. 

𝐻1: True location shift is not equal to 0. 

According to the result of Wilcoxon signed-rank test, there is a difference between 

the median of MAPE for LSTM-BRNN and XGBoost-BRNN, since the p-values of 

tests are smaller than 0.05, which is given Table 4.3. Moreover, the median MAPE 

of RF is different and smaller than all other models. 
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Table 4.5. The P-Value of Wilcoxon Signed-Rank Test 

  ARIMA ETS TBATS SVM RF XGBoost NNETAR LSTM BRNN 

ARIMA - 0.39 0.53 0.83 0 0.41 0.8 0.39 0.2 

ETS 0.39 - 0.8 0.38 0 1 0.97 0.88 0.07 

TBATS 0.53 0.8 - 0.46 0 0.97 0.95 0.76 0.1 

SVM 0.83 0.38 0.46 - 0 0.24 0.8 0.29 0.32 

RF 0 0 0 0 - 0 0 0 0 

XGBoost 0.41 1 0.97 0.24 0 - 0.55 0.83 0.03 

NNETAR 0.8 0.97 0.95 0.8 0 0.55 - 0.62 0.44 

LSTM 0.39 0.88 0.76 0.29 0 0.83 0.62 - 0.04 

BRNN 0.2 0.07 0.1 0.32 0 0.03 0.44 0.04 - 

 

In addition to this comparison, the MAPE values of the models are shown in Figure 

4.3. According to the boxplot, the NNETAR, ETS, TBATS and LSTM have more 

variations and higher error values compared to other models. 

On the other hand, RF being more accurate than the other models has less variation 

and lower error values. Finally, it can be observed that some models create some 

big error values in their model performances. 

 

Figure 4.3. The Average of MAPE Values of All Models 
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4.4.2 Computational Times 

Since the training and parameter optimization of all MIS groups are included in a 

single cell in the structure of machine learning methods, the total running times of 

the models are given. The sys.time() function was utilized in R and ipython-autotime 

is implemented to measure the time it takes to execute each cell in Python. The 

calculated computation time for the models includes model training, validating, and 

forecasting steps since the whole MIS groups are used together for the modeling 

procedure.  

The statistical approaches are implemented in a short time of period compared to 

machine learning models since the parameter tunning process is not applied to them. 

For example, the ARIMA model, predicting 15 MIS groups the best among the 

statistical methods, estimated 25 groups in a total of 2.561 seconds.  

The XGBoost model, which predicted all MIS groups in the longest time, took 

almost 2 hours. The biggest reason for this is that the number of parameters 

optimized in XGBoost is eight, compared to other models implemented in R, and the 

parameter range is wider. SVM, RF and NNETAR forecast 25 MIS groups in 

24.12115 minutes, 2.025247 minutes, and 19.33765 seconds respectively. Cost and 

gamma parameters in the SVM model, ntree and mtry numbers in the RF model, and 

the number of neurons in the function and the lambda parameter required for Box-

Cox transformation in the NNETAR model are optimized. Considering the MAPE 

value, the RF model predicted 14 of 25 groups with the least error and the least 

computation time. The LSTM model, which is the only method implemented in 

Python, is forecasted in 4 hours 26 minutes 40 seconds. While constructing the 

LSTM model, drop out value, the number of units in LSTM layers and the number 

of units in dense layers, batch size, epochs, learning rate are tuned according to the 

validation loss value. The BRNN approach predicted 25 groups in 40.117 seconds.  
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Table 4.6. The Computation Time for Model Training 

Model Computation Time 

ARIMA 2.561 secs 

ETS 0.594 secs 

TBATS 11.874 secs 

SVM 24.12115 mins 

RF 2.025247 mins 

XGBoost 1 hr 42 min 47 secs 

NNETAR 19.33765 secs 

LSTM 4hr 26 min 40 secs 

BRNN 13.76523 secs 
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CHAPTER 5  

5. CONCLUSION AND FUTURE STUDIES 

The chip crisis in the global automotive industry is constantly changing its 

production plans. The claim rate is frequently used in the analysis of warranty data. 

However, the fact that the number of production, which directly affects this rate, 

cannot be predicted due to the crisis, causes uncertainty in business processes. 

Studies in the literature have generally focused on the claim rate. In the thesis, many 

of the related researches are introduced at the beginning and the theoretical 

foundations of the methods used are discussed in detail. 

In this study, a 3-month consecutive forecasting of the total number of claims was 

constructed for 25 different months in services groups by using the warranty data 

from the automotive industry. Nine different models were utilized: statistical 

methods ARIMA, ETS, and TBATS and machine learning algorithms SVM, RF, 

XGBoosting, Feed Forward Neural Network, LSTM, and BRNN. 

The prediction performance of the models in the study was compared according to 

the RMSE and MAPE values, and in addition, not only the prediction accuracy but 

also the computation time required to predict were compared. With the non-

parametric tests applied to compare the performances of the models, it has been 

observed that the most successful approach to be applied for the company is Random 

Forest. When the forecast values of the applied models were shared with the 

company, the forecasting of the number of claims for each MIS group positively 

affected the business processes of the company. Due to the results of this study, the 

warranty process can now be carried out from the number of claims instead of the 

claim rate in the crisis related to production. 
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Overall, the Random Forest approach has helped to predict models with low mean 

absolute percentage error. While it outperformed the other models in 14 groups in 

machine learning methods, it was the second most successful model in 4 groups in 

total. The number of ntree of the most successful models varies between 300 and 

1300, and the number of mtry varies between 1 and 4. 

Considering the trends of the groups, MIS 7-8, MIS 9 -10, MIS 17- 19, have similar 

patterns over time. The remaining groups' overall claim distribution over time, 

however, differs from one another. In this study, it was shown that the models that 

performed well for groups with comparable patterns shared similarities. 

First of all, RF has the lowest MAPE value in machine learning algorithms in MIS 7 

and MIS 8 groups, while BRNN and NNETAR are the second most successful 

models. Although the best parameter values used for these groups are close to each 

other for BRNN and NNETAR, the ntree and mtry values used for RF are different 

from each other.  In statistical methods, while ARIMA(0,1,0) which is a random 

walk model for MIS 7 performed better, TBATS model was the best performing 

model for MIS 8, which may be due to the higher non linearity of MIS 8.  

Besides that, machine learning methods, RF is the best model for MIS 9 and MIS 10, 

BRNN and LSTM, respectively, are the second best models for these MIS groups. 

The statistical method indicated that the least error for both groups was the 

ARIMA(0,1,0) model. Finally, the statistical methods, ETS and TBATS, models 

outperformed ML models for the MIS 17, MIS 19 and MIS 23 groups. 

Considering the statistical methods, the ARIMA model, which is superior to other 

statistical models in estimating the future values of the series, forecast 15 groups out 

of 25 groups with the lowest error value. While TBATS showed the lowest error 

value for 7 groups, ETS was the most successful model in 4 groups. 

The change of trend and seasonality patterns within the dataset is not important for 

a good model, because models with good performance also incorporate this mode of 

change into the model (Hyndman et al., 2007). However, the dataset utilized in this 
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thesis is noisy and does not contain enough observations to understand the pattern of 

the models. Therefore, the metric values measuring accuracy were quite high in some 

groups.  

ARIMA, ETS, TBATS, and NNETAR models mean absolute percentage value was 

more than 50% in 2 groups out of 25 groups. The BRNN, XGBoost, and SVM 

models on the other hand, have more than 50% MAPE in one group. While the 

MAPE values of the RF model did not exceed 50% in any group, the error rate was 

higher than 50% in 3 of 25 groups in the LSTM model. Statistical methods forecast 

in MIS groups 17-19-23 with half the MAPE value of machine learning methods. 

Although the Bayesian Weight Optimization technique of the LSTM model 

successfully optimized the parameters, there were overlearning problems in some 

MIS groups. To avoid this, the model architecture was chosen small and the range 

of dropout values was kept high. The MAPE metrics of the models implemented 

using various weight initializers were very different from each other. Since the study 

suggested the best model, glorot uniform weight initializer was used, which helps to 

create a model with the least error value. This study has shown that the use of weight 

initializer, dropout values , and small architecture affects LSTM model performance 

in small datasets. 

The brnn and nnetar functions used in R are very limited in use as they do not allow 

changing the number of layers and weights. At the same time, there is no learning 

rate information in these functions, and there is no epoch information in the nnetar 

function. This situation, which caused a limited study area, prevented the 

investigation and prevention of overfitting in some MIS groups. 

Finally, Table 4.1. and Table 4.2. show the MAPE and RMSE values for each group 

of the nine models used in this study. It has been observed that the models with the 

highest prediction accuracy are generally selected from the machine learning models. 

Specifically, it can be said that the RF may be the best option for forecasting due to 

having the overall best performance concerning error measures and requiring a short 

time.  
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However, we also know that the performance of statistical and machine learning 

approaches can be improved by increasing the number of observations in the MIS 

groups utilized to further improve the performances obtained from this study. By 

giving the parameter tuning section more contemplated in future investigations, 

some convergence or training issues can be resolved. 

In the modeling part, different models that have been proven as successful in time 

series forecasting such as Recurrent Neural Network and Convolutional Neural 

Networks can be applied. Although the univariate time series is applied, the inclusion 

of many variables, such as the wear rate of the product, defective parts, production 

period, precipitation, and climate used in addition to the factors affecting the number 

of claims may affect the performance of the model. 

Finally, the hybrid approach, where ML models and statistical approaches are 

combined, may also have an impact on the performance of the model.  
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APPENDICES 

A. The ACF-PACF Plot of MIS 6 

 

 

Figure A.1. The ACF- PACF Plot of MIS 6 
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B. The Tuned Hyperparameters of Machine Learning Methods 

Table B.1. The Tuned Hyperparameters of Machine Learning Methods for MIS 0 

Model Tuned Parameters 

RF ntree:400, mtry:4 

SVM cost:0.00003, gamma:256 

XGBoost eta:0.025, max depth:3, gamma:0.9, colsample 

by tree:0, min child weight:12, subsample:0.78 

NNETAR neuron:1, non-seasonal lag:1 

BRNN alpha:2.14, beta:3.83, gamma:3.86, Ed:4.33, 

Ew:0.9, p:4, n:37, neurons:2, epoch:19 

LSTM 

 

lstm layer(1st):5, dropout value:0.2, dense 

layer(1st):3, learning rate:0.1 

epoch:10 

 

Table B.2. The Tuned Hyperparameters of Machine Learning Methods for MIS 1 

Model Tuned Parameters 

RF ntree:200, mtry:2 

SVM cost:0.00024, gamma:128 

XGBoost eta:0.02, max depth:3, gamma:0.9, colsample 

by tree:0, min child weight:10, subsample:0.78 

NNETAR neuron:1, non-seasonal lag:1 

BRNN alpha:1.26, beta:4.49, gamma:4.64, Ed:3.61, 

Ew:1.84, p:4, n:37, neurons:6, epoch:24 

LSTM 

 

lstm layer(1st):1, dropout value:0.4, dense 

layer(1st):2, learning rate:0.01 

epoch:14 
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Table B.3. The Tuned Hyperparameters of Machine Learning Methods for MIS 2 

Model Tuned Parameters 

RF ntree:400, mtry:1 

SVM cost:0.00003, gamma:2048 

XGBoost eta:0.025, max depth:2, gamma:0.7, 

colsample by tree:0, min child weight:10, 

subsample:0.84 

NNETAR neuron:5, non-seasonal lag:1 

BRNN alpha:1.25, beta:7.32, gamma:5.48, Ed:2.15, 

Ew:2.19, p:4, n:37, neurons:8, epoch:23 

LSTM 

 

lstm layer(1st):4, dropout value:0.2, dense 

layer(1st):1, learning rate:0.01 

epoch:10 

 

Table B.4.  The Tuned Hyperparameters of Machine Learning Methods for MIS 3 

Model Tuned Parameters 

RF ntree:1100, mtry:4 

SVM cost:0.00003, gamma:4096 

XGBoost eta:0.025, max depth:3, gamma:0.7, 

colsample by tree:0, min child weight:12, 

subsample:0.84 

NNETAR neuron:5, non-seasonal lag:1 

BRNN alpha:1.54, beta:4.38, gamma:4.49, Ed:3.71, 

Ew:1.46, p:4, n:37, neurons:10, epoch:36 

LSTM 

 

lstm layer(1st):3, dropout value:0.2, dense 

layer(1st):3, learning rate:0.1 

epoch:21 
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Table B.5. The Tuned Hyperparameters of Machine Learning Methods for MIS 4 

Model Tuned Parameters 

RF ntree:200, mtry:3 

SVM cost:0.00003, gamma:512 

XGBoost eta:0.025, max depth:1, gamma:0.8, 

colsample by tree:0, min child weight:15, 

subsample:0.92 

NNETAR neuron:2, non-seasonal lag:1 

BRNN alpha:2.07, beta:6.32, gamma:4.43, Ed:2.58, 

Ew:1.07, p:4, n:37, neurons:2, epoch:15 

LSTM 

 

lstm layer(1st):5, dropout value:0.2, dense 

layer(1st):1, learning rate:0.1 

epoch:14 

 

Table B.6. The Tuned Hyperparameters of Machine Learning Methods for MIS 5 

Model Tuned Parameters 

RF ntree:1300, mtry:1 

SVM cost:0.00098, gamma:512 

XGBoost eta:0.025, max depth:3, gamma:0.7, 

colsample by tree:0, min child weight:15, 

subsample:0.84 

NNETAR neuron:2, non-seasonal lag:2 

BRNN alpha:0.83, beta:12.17, gamma:4.97, Ed:1.32, 

Ew:3, p:4, n:37, neurons:1, epoch:12 

LSTM 

 

lstm layer(1st):3, dropout value:0.2, dense 

layer(1st):3, learning rate:0.01 

epoch:14 
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Table B.7. The Tuned Hyperparameters of Machine Learning Methods for MIS 6 

Model Tuned Parameters 

RF ntree:1100, mtry:3 

SVM cost:0.00098, gamma:256 

XGBoost eta:0.025, max depth:3, gamma:0.7, 

colsample by tree:0, min child weight:10, 

subsample:0.78 

NNETAR neuron:5, non-seasonal lag:1 

BRNN alpha:1.11, beta:10.81, gamma:5.05, Ed:1.48, 

Ew:2.28, p:4, n:37, neurons:1, epoch:16 

LSTM 

 

lstm layer(1st):2, dropout value:0.2, dense 

layer(1st):4, learning rate:0.01 

epoch:13 

 

Table B.8. The Tuned Hyperparameters of Machine Learning Methods for MIS 7 

Model Tuned Parameters 

RF ntree:300, mtry:3 

SVM cost:0.00195, gamma:32 

XGBoost eta:0.02, max depth:2, gamma:0.9, colsample 

by tree:0, min child weight:15, 

subsample:0.78 

NNETAR neuron:1, non-seasonal lag:1 

BRNN alpha:1.09, beta:6.71, gamma:4.99, Ed:2.39, 

Ew:2.29, p:4, n:37, neurons:1, epoch:17 

LSTM 

 

lstm layer(1st):2, dropout value:0.2, dense 

layer(1st):4, learning rate:0.1 

epoch:33 



 

 

80 

Table B.9. The Tuned Hyperparameters of Machine Learning Methods for MIS 8 

Model Tuned Parameters 

RF ntree:300, mtry:4 

SVM cost:0.125, gamma:4 

XGBoost eta:0.02, max depth:3, gamma:0.8, colsample 

by tree:0, min child weight:15, 

subsample:0.92 

NNETAR neuron:4, non-seasonal lag:5 

BRNN alpha:1.15, beta:7.58, gamma:4.94, Ed:2.12, 

Ew:2.14, p:4, n:37, neurons:1, epoch:16 

LSTM 

 

lstm layer(1st):3, dropout value:0.7, dense 

layer(1st):1, learning rate:0.01 

epoch:43 

 

Table B.10. The Tuned Hyperparameters of Machine Learning Methods for MIS 9 

Model Tuned Parameters 

RF ntree:600, mtry:3 

SVM cost:0.00049, gamma:64 

XGBoost eta:0.02, max depth:3, gamma:0.8, colsample 

by tree:0, min child weight:15, 

subsample:0.78 

NNETAR neuron:2, non-seasonal lag:1 

BRNN alpha:1.15, beta:8.73, gamma:4.99, Ed:1.83, 

Ew:2.16, p:4, n:37, neurons:1, epoch:18 

LSTM 

 

lstm layer(1st):3, dropout value:0.4, dense 

layer(1st):3, learning rate:0.01 

epoch:14 
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Table B.11. The Tuned Hyperparameters of Machine Learning Methods for MIS 10 

Model Tuned Parameters 

RF ntree:900, mtry:2 

SVM cost:0.0625, gamma:4 

XGBoost eta:0.02, max depth:2, gamma:0.8, colsample 

by tree:0, min child weight:12, 

subsample:0.78 

NNETAR neuron:2, non-seasonal lag:1 

BRNN alpha:1.09, beta:6.69, gamma:4.84, Ed:2.4, 

Ew:2.22, p:4, n:37, neurons:1, epoch:14 

LSTM 

 

lstm layer(1st):1, dropout value:0.6, dense 

layer(1st):2, learning rate:0.1 

epoch:10 

 

Table B.12. The Tuned Hyperparameters of Machine Learning Methods for MIS 11 

Model Tuned Parameters 

RF ntree:1100, mtry:2 

SVM cost:0.0625, gamma:1 

XGBoost eta:0.02, max depth:3, gamma:0.8, colsample 

by tree:0, min child weight:12, 

subsample:0.78 

NNETAR neuron:4, non-seasonal lag:1 

BRNN alpha:1.24, beta:7.29, gamma:4.92, Ed:2.2, 

Ew:1.99, p:4, n:37, neurons:1, epoch:15 

LSTM 

 

lstm layer(1st):3, dropout value:0.2, dense 

layer(1st):2, learning rate:0.01 

epoch:30 
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Table B.13. The Tuned Hyperparameters of Machine Learning Methods for MIS 12 

Model Tuned Parameters 

RF ntree:500, mtry:2 

SVM cost:0.00024, gamma:512 

XGBoost eta:0.02, max depth:2, gamma:0.7, colsample 

by tree:0, min child weight:15, 

subsample:0.92 

NNETAR neuron:1, non-seasonal lag:1 

BRNN alpha:1.24, beta:7.44, gamma:4.98, Ed:2.15, 

Ew:2.01, p:4, n:37, neurons:1, epoch:18 

LSTM 

 

lstm layer(1st):1, dropout value:0.2, dense 

layer(1st):3, learning rate:0.01 

epoch:31 

 

Table B.14. The Tuned Hyperparameters of Machine Learning Methods for MIS 13 

Model Tuned Parameters 

RF ntree:300, mtry:1 

SVM cost:0.00003, gamma:4096 

XGBoost eta:0.02, max depth:2, gamma:0.8, colsample 

by tree:0, min child weight:12, 

subsample:0.78 

NNETAR neuron:4, non-seasonal lag:3 

BRNN alpha:1.01, beta:8.71, gamma:5.11, Ed:1.83, 

Ew:2.52, p:4, n:37, neurons:1, epoch:14 

LSTM 

 

lstm layer(1st):1, dropout value:0.2, dense 

layer(1st):4, learning rate:0.01 

epoch:14 
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Table B.15. The Tuned Hyperparameters of Machine Learning Methods for MIS 14 

Model Tuned Parameters 

RF ntree:1400, mtry:2 

SVM cost:0.00012, gamma:1024 

XGBoost eta:0.02, max depth:1, gamma:0.9, colsample 

by tree:0, min child weight:15, 

subsample:0.92 

NNETAR neuron:2, non-seasonal lag:1 

BRNN alpha:1.47, beta:8.14, gamma:4.6, Ed:1.99, 

Ew:1.56, p:4, n:37, neurons:10, epoch:51 

LSTM 

 

lstm layer(1st):3, dropout value:0.4, dense 

layer(1st):1, learning rate:0.01 

epoch:25 

 

Table B.16. The Tuned Hyperparameters of Machine Learning Methods for MIS 15 

Model Tuned Parameters 

RF ntree:500, mtry:1 

SVM cost:0.0625, gamma:2 

XGBoost eta:0.02, max depth:3, gamma:0.8, colsample 

by tree:0, min child weight:12, 

subsample:0.78 

NNETAR neuron:4, non-seasonal lag:1 

BRNN alpha:1.25, beta:7.75, gamma:5.04, Ed:2.06, 

Ew:2.01, p:4, n:37, neurons:1, epoch:17 

LSTM 

 

lstm layer(1st):4, dropout value:0.6, dense 

layer(1st):4, learning rate:0.01 

epoch:19 
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Table B.17. The Tuned Hyperparameters of Machine Learning Methods for MIS 16 

Model Tuned Parameters 

RF ntree:600, mtry:1 

SVM cost:0.00006, gamma:512 

XGBoost eta:0.025, max depth:1, gamma:0.8, 

colsample by tree:0, min child weight:10, 

subsample:0.84 

NNETAR neuron:4, non-seasonal lag:5 

BRNN alpha:1.48, beta:4.68, gamma:5, Ed:3.42, 

Ew:1.69, p:4, n:37, neurons:1, epoch:15 

LSTM 

 

lstm layer(1st):3, dropout value:0.2, dense 

layer(1st):4, learning rate:0.01 

epoch:14 

 

Table B.18. The Tuned Hyperparameters of Machine Learning Methods for MIS 17 

Model Tuned Parameters 

RF ntree:400, mtry:1 

SVM cost:0.00003, gamma:4096 

XGBoost eta:0.025, max depth:1, gamma:0.9, 

colsample by tree:0, min child weight:12, 

subsample:0.78 

NNETAR neuron:1, non-seasonal lag:1 

BRNN alpha:0.94, beta:5.69, gamma:5.91, Ed:2.73, 

Ew:3.13, p:4, n:37, neurons:10, epoch:44 

LSTM 

 

lstm layer(1st):4, dropout value:0.2, dense 

layer(1st):2, learning rate:0.01 

epoch:48 
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Table B.19. The Tuned Hyperparameters of Machine Learning Methods for MIS 18 

Model Tuned Parameters 

RF ntree:400, mtry:1 

SVM cost:0.00006, gamma:8192 

XGBoost eta:0.001, max depth:1, gamma:0.7, 

colsample by tree:0, min child weight:15, 

subsample:0.92 

NNETAR neuron:3, non-seasonal lag:4 

BRNN alpha:0.91, beta:5.74, gamma:5.04, Ed:2.78, 

Ew:2.76, p:4, n:37, neurons:1, epoch:34 

LSTM 

 

lstm layer(1st):4, dropout value:0.2, dense 

layer(1st):1, learning rate:0.01 

epoch:54 

 

Table B.20. The Tuned Hyperparameters of Machine Learning Methods for MIS 19 

Model Tuned Parameters 

RF ntree:1300, mtry:3 

SVM cost:0.00195, gamma:64 

XGBoost eta:0.001, max depth:2, gamma:0.7, 

colsample by tree:0, min child weight:10, 

subsample:0.78 

NNETAR neuron:5, non-seasonal lag:10 

BRNN alpha:0.94, beta:4.53, gamma:6.61, Ed:3.35, 

Ew:3.53, p:4, n:37, neurons:5, epoch:54 

LSTM 

 

lstm layer(1st):4, dropout value:0.2, dense 

layer(1st):3, learning rate:0.01 

epoch:15 
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Table B.21. The Tuned Hyperparameters of Machine Learning Methods for MIS 20 

Model Tuned Parameters 

RF ntree:300, mtry:1 

SVM cost:0.125, gamma:2 

XGBoost eta:0.001, max depth:1, gamma:0.8, 

colsample by tree:0, min child weight:12, 

subsample:0.92 

NNETAR neuron:5, non-seasonal lag:6 

BRNN alpha:0.8, beta:5.01, gamma:7.98, Ed:2.9, 

Ew:4.97, p:4, n:37, neurons:10, epoch:30 

LSTM 

 

lstm layer(1st):5, dropout value:0.2, dense 

layer(1st):4, learning rate:0.01  

epoch:13 

 

Table B.22. The Tuned Hyperparameters of Machine Learning Methods for MIS 21 

Model Tuned Parameters 

RF ntree:700, mtry:1 

SVM cost:0.0625, gamma:0.5 

XGBoost eta:0.001, max depth:1, gamma:0.8, 

colsample by tree:0, min child weight:12, 

subsample:0.92 

NNETAR neuron:0, non-seasonal lag:1 

BRNN alpha:1.87, beta:4.86, gamma:4.33, Ed:3.36, 

Ew:1.16, p:4, n:37, neurons:10, epoch:70 

LSTM 

 

lstm layer(1st):3, dropout value:0.2, dense 

layer(1st):5, learning rate:0.01 

epoch:99 
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Table B.23. The Tuned Hyperparameters of Machine Learning Methods for MIS 22 

Model Tuned Parameters 

RF ntree:200, mtry:1 

SVM cost:0.0625, gamma:2 

XGBoost eta:0.001, max depth:3, gamma:0.8, 

colsample by tree:0, min child weight:10, 

subsample:0.84 

NNETAR neuron:1, non-seasonal lag:1 

BRNN alpha:1.11, beta:6.64, gamma:4.99, Ed:2.41, 

Ew:2.24, p:4, n:37, neurons:1, epoch:17 

LSTM 

 

lstm layer(1st):4, dropout value:0.2, dense 

layer(1st):5, learning rate:0.01 

epoch:21 

 

Table B.24. The Tuned Hyperparameters of Machine Learning Methods for MIS 23 

Model Tuned Parameters 

RF ntree:500, mtry:1 

SVM cost:0.03125, gamma:4 

XGBoost eta:0.001, max depth:2, gamma:0.9, 

colsample by tree:0, min child weight:10, 

subsample:0.84 

NNETAR neuron:1, non-seasonal lag:1 

BRNN alpha:0.77, beta:8.46, gamma:9.96, Ed:1.6, 

Ew:6.46, p:4, n:37, neurons:4, epoch:37 

LSTM 

 

lstm layer(1st):1, dropout value:0.2, dense 

layer(1st):5, learning rate:0.01 

epoch:46 
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Table B.25. The Tuned Hyperparameters of Machine Learning Methods for MIS 24 

Model Tuned Parameters 

RF ntree:300, mtry:1 

SVM cost:0.0625, gamma:1 

XGBoost eta:0.001, max depth:2, gamma:0.9, 

colsample by tree:0, min child weight:12, 

subsample:0.92 

NNETAR neuron:2, non-seasonal lag:1 

BRNN alpha:0.38, beta:25.4, gamma:21.12, Ed:0.31, 

Ew:28.04, p:4, n:37, neurons:6, epoch:74 

LSTM 

 

lstm layer(1st):5, dropout value:0.2, dense 

layer(1st):1, learning rate:0.01 

epoch:25 



 

 

89 

C. LSTM Models Implemented with Weight Initialization Techniques for 

MIS 0 

 

Figure C.1. The Plot of Actual and Predicted Claims with Variance Scaling Weight 

Initialization 
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Figure C.2. The Plot of MAPE Values of Train and Validation Sets with Variance 

Scaling Weight Initialization 

 

 

Figure C.3. The Plot of Actual and Predicted Claims with Variance Scaling Weight 

Initialization on Validation Dataset 
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Figure C.4. The Plot of Actual and Predicted Claims with Random Normal Weight 

Initialization 

 

 

Figure C.5. The Plot of MAPE Values of Train and Validation Sets with Random 

Normal Weight Initialization 



 

 

92 

 

Figure C6. The Plot of Actual and Predicted Claims with Random Normal Weight 

Initialization on Validation Dataset 

 

Figure C.7. The Plot of Actual and Predicted Claims with Random Uniform Weight 

Initialization 
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Figure C.8. The Plot of MAPE Values of Train and Validation Sets with Random 

Uniform Weight Initialization 

 

Figure C.9. The Plot of Actual and Predicted Claims with Random Uniform Weight 

Initialization on Validation Dataset 
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Figure C.10. The Plot of Actual and Predicted Claims with Zero Weight Initialization 

 

Figure C.11. The Plot of MAPE Values of Train and Validation Sets with Zero 

Weight Initialization 
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Figure C.12. The Plot of Actual and Predicted Claims with Zero Weight Initialization 

on Validation Dataset 

 

 

Figure C.13. The Plot of Actual and Predicted Claims with Glorot Normal Weight 

Initialization
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Figure C.14. The Plot of MAPE Values of Train and Validation Sets with Glorot 

Normal Weight Initialization 

 

 

Figure C.15. The Plot of Actual and Predicted Claims with Glorot Normal Weight 

Initialization on Validation Dataset 
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Table C.1. Parameters of Models were tuned with Five Different Weight 

Initialization Methods 

 Tuned Parameters 

Glorot Normal Initializer lstm layer(1st):2, dropout value:0.2, dense 

layer(1st):3, learning rate:0.01 

epoch:15 

sVariance Scaling Weight 

Initializer 

lstm layer(1st):5, dropout value:0.2, dense 

layer(1st):3, learning rate:0.01 

epoch:13 

Random Normal Initializer lstm layer(1st):1, dropout value:0.2, dense 

layer(1st):2, learning rate:0.01 

epoch:10 

Random Uniform Initializer lstm layer(1st):1, dropout value:0.2, dense 

layer(1st):2, learning rate:0.01 

epoch:11 

Initializer Weight to Zero lstm layer(1st):1, dropout value:0.2, dense 

layer(1st):3, learning rate:0.01 

epoch:15 

 

 


